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Abstract

Mixed effect modeling for longitudinal data is challenging when the observed data are
random objects, which are complex data taking values in a general metric space without linear
structure. In such settings the classical additive error model and distributional assumptions
are unattainable. Due to the rapid advancement of technology, longitudinal data containing
complex random objects, such as covariance matrices, data on Riemannian manifolds, and
probability distributions are becoming more common. Addressing this challenge, we develop
a mixed-effects regression for data in geodesic spaces, where the underlying mean response
trajectories are geodesics in the metric space and the deviations of the observations from the
model are quantified by perturbation-maps or transports. A key finding is that the geodesic
trajectories assumption for the case of random objects is a natural extension of the linearity
assumption in the standard Euclidean scenario. Further, geodesics can be recovered from noisy
observations by exploiting a connection between the geodesic path and the path obtained by
global Fréchet regression for random objects. The effect of baseline Euclidean covariates on
the geodesic paths is modeled by another Fréchet regression step. We study the asymptotic
convergence of the proposed estimates and provide illustrations through simulations and real-
data applications.

KEY WORDS: Random Effects; Random objects; Geodesics; Perturbation; Optimal transport;
Fréchet regression; M-estimation.
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1 Introduction

In the era of modern data science, complex data structures are increasingly encountered. An im-

portant but largely unexplored setting is where a response variable takes values in a non-Euclidean

metric space without vector space operations or inner product. Examples of such random ob-

jects (Müller, 2016) include distributional data in Wasserstein space (Petersen and Müller, 2016;

Matabuena et al., 2021), symmetric positive definite matrix objects (Dryden et al., 2009), spherical

data (Di Marzio et al., 2014), phylogenetic trees (Billera et al., 2001) and data on finite-dimensional

Riemannian manifolds (Bhattacharya and Patrangenaru, 2003, 2005; Afsari, 2011; Eltzner and

Huckemann, 2019), among other data types. Data modeling and analysis for metric space valued

data is challenging due to the absence of any linear structure. For example, the definition of a sample

or population mean as an average or expected value is not applicable and is replaced by barycenters

or Fréchet means (Fréchet, 1948). Similarly, regression approaches to quantify the dependence be-

tween a random object response and Euclidean predictors require a notion of a conditional Fréchet

mean (Petersen and Müller, 2019) with several approaches for corresponding regression models

(Hein, 2009; Dong and Wu, 2022; Schötz, 2022; Zhang et al., 2021, 2022).

Technological advances have made it possible to record and efficiently store repeated measure-

ments of images (Peyré, 2009; González-Briones et al., 2018), shapes (Small, 2012), networks (Tsochan-

taridis et al., 2004) and other random objects. There are only few methods available to analyze time

courses of random objects and only for the case where time courses are continuously recorded and

fully observed over time (Dubey and Müller, 2020). But when such data are recorded in longitudinal

studies with repeated observations of random objects, these are often sparsely recorded over time,

posing a substantial additional challenge for statistical analysis. To our knowledge, there is cur-

rently no statistical method available to handle longitudinal random objects. This paper presents

the first approach for the statistical analysis of such data. For sparsely sampled trajectories as we

consider here it is of interest to gain information about the actual individual time courses, i.e., the

underlying metric-space valued curves that produce the observed measurements but are latent, due

to the sparse measurement scheme.

Flexible nonparametric recovery methods have been extensively studied for the case of scalar

responses based on versions of functional principal component analysis (see, e.g., Staniswalis and
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Lee, 1998; Rice and Wu, 2001; Yao et al., 2005; Şentürk and Nguyen, 2011; Yao et al., 2015; Chen

et al., 2021; Li et al., 2022). However, all of these approaches require that the data are in a linear

space and thus cannot be extended to the case of object data, where one cannot make use of vector

space operations. A second and more restrictive approach are classical Euclidean linear mixed effects

models (Laird and Ware, 1982; Diggle et al., 2002; Verbeke et al., 2010), where the individuals in

the population are assumed to follow the same general linear model but with random intercepts

and slopes that are subject-specific, with various extensions (see, e.g., Wu, 2009; Schiratti et al.,

2015; Allassonniere et al., 2017; Yue et al., 2020; Pellagatti et al., 2021). Our goal in this paper is

to address the challenges to extend random effects models to the case of object data.

Given a covariate vector Zi P Rp, p ě 1, for the ith subject, 1 ď i ď n, repeated measurements

Yi “ pYi1, Yi2, . . . , Yini
q and measurement times Ti “ pTi1, Ti2, . . . , Tini

q, the mixed effects linear

regression for repeated measurements/longitudinal data is

E pYiptq|νi, Tij “ tq “ νit, E pνi|Zi “ zq “ β⊺z, (1)

where the νi are subject-specific random slopes that determine trajectories νit and depend linearly

on the baseline covariate vector Z. Here β P Rp is a fixed parameter vector. A typical additional

assumption is Yiptq “ νit`εptq for zero mean finite variance additive errors and also joint Gaussianity

of all random components. As we aim to generalize model (1) to the case of sparse random object

observations Yij, where an additive structure for the model is not available, the trajectories νit are

written without intercepts; in the real case, this form can be obtained by centering predictors and

responses for each subject.

A key observation that makes it possible to generalize model (1) to the case of object data

is that the linearity assumption from a more general perspective corresponds to the assumption

that responses are scattered around a geodesic, which in the case of real-valued data is a line.

Accordingly we consider in the following geodesic metric spaces; we will model subject-specific

random trajectories as geodesics in such spaces. Noisy observations of random objects are sparse in

time and located around the geodesic, where noise is modeled through perturbation maps that are

applied to the true random objects, as in metric spaces there is no framework for additive noise. To

obtain asymptotic results, we consider the case of small errors and develop an approach that makes
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it possible to recover the subject-specific geodesic trajectories, using global Fréchet regression for

random object responses (Petersen and Müller, 2019) as an auxiliary tool.

In Section 2 we provide a brief review of metric geometry and geodesics and provide further

motivation for the proposed model. In Section 3, we discuss the connection between the underlying

subject-specific geodesic path and the path estimated by the global Fréchet regression method and

proceed to establish theoretical guarantees for the asymptotic convergence of model components,

including rates, based on M-estimation theory. Our motivating application examples deal with

samples of probability distributions, data lying on the unit sphere in R3 and correlation matrices,

which are illustrated with simulations in Section 4. Real data applications for resting state fMRI

longitudinal data from ADNI and demographic data are discussed in Section 5.

2 Preliminaries and Model

2.1 Preliminaries on Metric Spaces

In the following, pM, dq denotes a metric space that is complete, separable and totally bounded

and we refer to the elements Y P M as random objects. We consider sets T “ r0, 1s and S Ă Rp

for p ě 1 and a random tuple pY, T, Zq with a joint distribution on the product space M ˆ T ˆ S,

where in a regression setting Y P M is a random object response, T P T is a random time point

where the random object Y is observed and Z a (baseline) covariate with Z P S. We focus on a

longitudinal setting, where one observes n subjects and ni ą 1 observations are made at random

times Tij P T for the ith subject with corresponding observations Yij “ YipTijq P M.

A geodesic in a geodesic metric space connecting two distinct points is the shortest path con-

necting the two points. Geodesics in a metric space are analogous to straight lines in a Eu-

clidean space. In a uniquely geodesic metric space M with metric d, a constant speed geodesic

γν0,ν1ptq P M, t P r0, 1s, connecting two points ν0 and ν1 is characterized by γν0,ν1p0q “ ν0,

γν0,ν1p1q “ ν1 and dpγν0,ν1pt1q, γν0,ν1pt2qq “ |t1 ´ t2|dpν0, ν1q. If for any two points in a metric

space there exists a geodesic that connects them, the space is a geodesic space and it is uniquely

geodesic if for every pair of points x, y P M, there is a unique geodesic γν0,ν1 : r0, 1s ÞÑ M from x

to y. For further details and background we refer to Burago et al. (2001) and the review in Section
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2 of Lin and Müller (2021). Given a geodesic γν0,ν1ptq defined on t P r0, 1s, if the geodesic property

as defined above continues to hold for γν0,ν1ptq with t P rt1, t2s where t1 ă 0 ă 1 ă t2, we say

that the geodesic can be extended from r0, 1s to rt1, t2s (Ahidar-Coutrix et al., 2020). We assume

throughout that pM, dq is a uniquely extendable geodesic space, i.e., it is a uniquely geodesic space,

where all geodesics can be extended. It is obvious that the Euclidean space, where the geodesic path

connecting two points a, b P R is simply the line connecting the two points, is a uniquely extendable

geodesic space. Other examples of uniquely extendable geodesic spaces are as follows.

Example 1: Space of distributions with the Wasserstein metric. For a closed interval Q Ă R, the

Wasserstein space W2pQq of probability distributions on Q with finite second moments is endowed

with the L2-Wasserstein distance

dW pµ, νq “

ˆ
ż 1

0

rF´1
µ psq ´ F´1

ν psqs
2ds

˙1{2

, for µ, ν P W2pQq,

where F´1
µ and F´1

ν denote the quantile functions of µ and ν, respectively. We further require the

distributions to be continuous, i.e., to possess densities. Then pW2pQq, dW q is a uniquely geodesic

space (Ambrosio and Gigli, 2008). Given any µ, ν P W2pQq where µ ‰ ν, there is a unique geodesic

that connects µ and ν, given by γµ,νptq “ rtpF´1
ν ˝ Fµ ´ idq ` ids#µ, t P r0, 1s. For a measurable

function h : Q Ñ Q, h#µ is a pushforward measure such that h#µpAq “ µptr P Q : hprq P Auq

for any set A P BpQq, the Borel σ-algebra on Q. For the extendibility of geodesics in the space of

continuous probability measures we refer to Ahidar-Coutrix et al. (2020); Zhu and Müller (2023).

Example 2: Space of positive definite matrices. The space of positive definite symmetric K ˆ K

matrices SK , equipped with the Frobenius inner product xA,ByF “ trpA⊺Bq and the induced

Frobenius metric dF pA,Bq “ }A ´ B}F , A,B P SK , where }A}F is the usual Euclidean matrix

norm, possesses unique geodesics, which are straight lines in the Euclidean vector space given by

γA,B : r0, 1s Ñ SK with γA,Bptq “ tA`p1´ tqB. Other metrics d for which SK is a uniquely geodesic

space include the log-Euclidean metric (Arsigny et al., 2007), the power metric family (Dryden et al.,

2010), the Log-Cholesky metric (Lin, 2019) and the Bures-Wasserstein metric (Takatsu, 2011); these

geodesics are extendible as long as A,B are strictly positive definite. A popular metric on SK that

has been successfully used in various practical applications for covariances is the square root power

metric (Pigoli et al., 2014; Tavakoli et al., 2019), where d1{2pA,Bq “ }A1{2 ´B1{2}F , A,B P SK ; we
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will use this metric in Section 5 to illustrate the proposed random effects model for neuroimaging

data. The geodesics in this metric are γA,Bptq “ ptA1{2 ` p1 ´ tqB1{2q2.

Example 3: Spheres with geodesic metric. A pp ´ 1q-dimensional sphere Sp´1 “ tx P Rp : }x} “ 1u

embedded in Rp is a complete Riemannian manifold. The geodesic metric dg between two points

x, y on the surface of the unit sphere Sn is given by dgpx, yq “ arccosxx, yy. Consider M “ S2

the 2-sphere with the spherical geodesic metric. Then the great circles are geodesics. The great

circle passing through two points x, y P S2 can be parametrized as γu,vptq “ pcos tqu ` psin tqv.

However, this space is not uniquely geodesic as two polar points can be connected by arbitrarily

many different geodesics. In order to make the space a uniquely geodesic space one can slice off the

subset of the sphere with x1 ď ´1 ` γ for any small 0 ă γ ď 1{2, which includes the half sphere,

where x1 is the first coordinate of x. Since the sphere with the slice removed is an open set, the

great circle geodesics are extendable.

Example 4: The space of phylogenetic trees. Phylogenetic trees are of interest in evolutionary biology,

where they are used to represent the evolutionary history of a set of organisms. In a seminal paper

(Billera et al., 2001), phylogenetic trees with m leaves are modeled by metric m-trees endowed with

a metric that turns the space of phylogenetic m-trees into a metric space, as follows: A leaf is a

vertex that is connected by only one edge, and a metric m-tree is a tree with m uniquely labeled

leaves and positive lengths on all interior edges, where an edge is called an interior edge if it does not

connect to a leaf. A collection of m-trees that have the same tree structure (taking leaf labels into

account) but different edge lengths can be identified with the orthant p0,8qr, where r is determined

by the tree structure and corresponds to the number of interior edges of each tree in the collection.

With this identification between points and metric m-trees, the BHV metric dT on the space Tm

of all metric m-trees is defined as follows: For two trees in the same orthant, their distance is the

Euclidean distance of their edge lengths, while for two trees from different orthants, their distance

is the minimum length over all paths that connect them and consist of only connected segments,

where a segment is a straight line within an orthant. The minimum length path is the geodesic,

which is extendable within the orthants where it starts and ends. According to Lemma 4.1 of Billera

et al. (2001), Tm is a unique geodesic space. It is a CATp0q space. More generally, each geodesic

CATp0q metric space is a unique geodesic space (for a brief review see, e.g., Lin and Müller, 2021).
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2.2 Preliminaries on noisy trajectories

Since the metric space where the random object responses reside is devoid of any vector-space

structure, one cannot use classical additive error models. Noise in observations can instead be

quantified by perturbation maps (Chen and Müller, 2022) P : M Ñ M, characterized by

µ1
“ argmin

µPM
E

“

d2pPpµ1
q, µq

‰

for all µ1
P M. (2)

We assume that for the ith individual, noise-contaminated random objects Yij recorded at Tij are

centered around an underlying trajectory αi. With perturbation maps (2), the observed data are

Yij “ Pij pαipTijqq , j “ 1, . . . , ni, i “ 1, . . . , n. (3)

In connection with the classical mixed effects model in (1), the perturbation map replaces addi-

tive errors and the underlying trajectory is αiptq “ νit. The size of the error is quantified as

Erd2pPijpαiptqq, αiptqqs, which is bounded owing to the total boundedness of the metric space, and

corresponds to the error variance for classical Euclidean responses.

For the classical linear mixed model αiptq “ νit is a line in the Euclidean space and therefore

a geodesic. Thus a defining feature of the classical linear mixed effects model is to fit geodesics to

the data. A natural extension to the case of a general geodesic space is then to replace linearity by

geodesicity, where observed data are assumed to cluster around a true geodesic. For the remainder of

the paper, the underlying trajectory αi for the ith individual is assumed to be a uniquely extendable

geodesic αi “ γ
piq
νi0,νi1 in the metric space pM, dq connecting the points νi0 and νi1. This leads to the

following general model for the observed data,

Yij “ Pij

“

γpiq
νi0,νi1

pTijq
‰

, j “ 1, . . . , ni, i “ 1, . . . , n. (4)

2.3 Random effects model for M-valued data

In a uniquely geodesic space M the randomness of the geodesic path γν0,ν1p¨q is incorporated through

the two endpoints ν0 and ν1 that determine the geodesic. For the ith individual, the underlying true

geodesic path that connects the end-points νi0 and νi1 is γpiq
νi0,νi1ptq : r0, 1s Ñ pM, dq. We assume
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throughout that with probability 1 the random geodesic that generates the observations is unique,

an assumption that is satisfied for unique geodesic spaces such as those discussed in Examples 1-4

in Section 2.1. We also require the following assumption for the data generation mechanism.

(A1) Observation times Tij, random perturbation maps Pij and the random mechanism that gener-

ates the underlying geodesic trajectory γpiq
νi0,νi1ptq t P r0, 1s (or alternatively generates the two

endpoints νi0 and νi1) are all independent and i.i.d.

The proposed random effects model at the subject level for M´valued responses is

γpiq
νi0,νi1

pTijq “ argmin
µPM

E
“

d2pYij, µq|γpiq
νi0,νi1

, Tij
‰

, Yij “ Pij

“

γpiq
νi0,νi1

pTijq
‰

, j “ 1, . . . , ni. (5)

Once the random effects inherent in the subject-specific geodesics are recovered from the noisy ob-

servations, we regress the entire geodesic paths
!

γ
piq
νi0,νi1ptq : t P r0, 1s

)

that constitute the responses

on the predictors Zi P S Ă Rp, p ě 1. This is implemented through modeling the conditional

Fréchet mean E‘

”

tγ
piq
νi0,νi1ptq : t P r0, 1su|Zi “ z

ı

through applying a global Fréchet regression step

(Petersen and Müller, 2019).

Since a geodesic is determined by the two endpoints, the geodesic path
!

γ
piq
νi0,νi1ptq : t P r0, 1s

)

can be represented as a M´valued pair pνi0, νi1q P pDM, dMq, where the space pDM, dMq is the

product metric space pM, dq ˆ pM, dq with the metric

dM ppa1, b1q, pa2, b2qq :“
a

d2pa1, a2q ` d2pb1, b2q, for all a1, a2, b1, b2 P pM, dq. (6)

In the context of metric geometry such product metric spaces with a l2-type metric that combines

the metrics of the original spaces have been extensively studied. In particular, it is well known that

DM is a geodesic space if and only if M is geodesic (Burago et al., 2001). This decomposition

enables us to model the effective object response pair separately as

ζ‘pzq “ E‘ rpνi0, νi1q |Zi “ zs “ argmin
pµ1,µ2qPpDM,dMq

E
“

d2M ppµ1, µ2q, pνi0, νi1qq |Zi “ z
‰

“ argmin
pµ1,µ2qPpDM,dMq

E
“

d2 pµ1, νi0q ` d2 pµ2, νi1q |Zi “ z
‰

. (7)
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This optimization problem is separable with optimal solution ζ‘pzq “ pζ0pzq, ζ1pzqq⊺ where

ζ0pzq “ argmin
µ1PM

E
“

d2 pµ1, νi0q |Zi “ z
‰

, ζ1pzq “ argmin
µ2PM

E
“

d2 pµ2, νi1q |Zi “ z
‰

. (8)

To implement the second step regression for higher dimensional predictors Z P S Ă Rp, p ě

2, we use the global Fréchet regression (GFR) (Petersen and Müller, 2019) method, which is a

generalization of multiple linear regression for random object responses, and thus provides a direct

extension of the multiple linear regression step for the baseline covariate effect that is implemented

in classical random effects modeling for Euclidean responses. For Euclidean data, the GFR approach

is equivalent to fitting a multiple linear regression model by least squares.

Employing the GFR approach, defining a weight function spZ, zq “ 1 ` pZ ´ µZq⊺Σ´1
Z pz ´ µZq

with µZ “ EpZq and ΣZ “ varpZq, the regression step in model (8) can be written as ζ‘pzq “

pζ0pzq, ζ1pzqq⊺, where

ζkpzq “ argmin
µPM

E
“

spZ, zqd2 pµ, νikq
‰

, k “ 0, 1. (9)

Combining a subject-specific approach in model (5) with model (8) for the impact of the covariate

Z thus provides a direct generalization of the standard random effects model (1).

3 Estimation and theory

Consider the global Fréchet regression (GFR) model with a response Y P pM, dq and a predictor

T P T Ă r0, 1s given by

m‘ptq “ argmin
µPM

E
“

wpT, tqd2 pµ, Y q
‰

, (10)

where wpT, tq “ 1`pT´µT q⊺Σ´1
T pt´µT q are weight functions that are linear in t, with µT “ EpT q and

ΣT “ varpT q. Based on the observations pYij, Tijq j “ 1, . . . , ni, for any given subject i, i “ 1, . . . , n,
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following (10), a subject-specific version of the GFR model is

mi‘ptq “ argmin
µPM

E
“

wpTij, tqd
2

pµ, Yijq
‰

, (11)

where the weight function w is defined as before. This model will be implemented to recover

individual trajectories from the data available separately for each subject, where we first assume

the data lie exactly on the underlying geodesic and subsequently consider the small error case,

dealing with additional perturbations of the responses.

Using a similar idea as Theorem 1 of Fan and Müller (2021) the following result shows that in

the noise-free case the geodesic paths coincide with the GFR path.

Theorem 1. Consider the sample pTij, Yijq, Tij P r0, 1s j “ 1, . . . , ni. For each subject i assume

that there exists a geodesic γ
piq
νi0,νi1ptq P pM, dq, t P r0, 1s that uniquely connects the endpoints

νi0 “ γ
piq
νi0,νi1p0q and νi1 “ γ

piq
νi0,νi1p1q such that the responses Yij “ YipTijq are located exactly on

this geodesic, that is, for each Yij P pM, dq there exists a uij P p0, 1q with Yij “ γ
piq
νi0,νi1puijq. If

the predictors Tij for any given subject i are such that Tij “ auij ` b, j “ 1, . . . , ni, for some

constants a, b P R, implementing the global Fréchet regression in (11) exactly recovers the geodesic

γ
piq
νi0,νi1ptq : t P r0, 1s. If the geodesic is extendable from r0, 1s to rs1, s2s and the extension is unique

in the sense that it is the only geodesic connecting γpiq
νi0,νi1ps1q and γpiq

νi0,νi1ps2q, then the global Fréchet

regression recovers the extended geodesic.

Under the assumptions of Theorem 1 the GFR path tmi‘ptq : t P r0, 1su coincides with the un-

derlying geodesic path
!

γ
piq
νi0,νi1ptq : t P r0, 1s

)

and the latter can be represented by the two endpoints

pνi0, νi1q with mi‘ptq “ γ
piq
νi0,νi1ptq for t “ 0, 1. If the geodesics are uniquely extendable, the pair

pmi‘p0q,mi‘p1qq effectively represents the M´valued random effect for the i´th subject and there-

fore serves as response for a second Fréchet regression as per model (7), (8), with the covariate Z

as predictor.

In practical implementation, we replace pmi‘p0q,mi‘p1qq by the empirical version of GFR

m̂i‘ptq “ argmin
µPM

1

ni

ni
ÿ

j“1

wpTij, tqd
2

pµ, Yijq , t “ 0, 1, (12)

where the empirical weights are w “ 1 ` pTij ´ T̄iq
⊺Σ̂´1

Ti
pt ´ T̄iq, with T̄i and Σ̂Ti

being the sample
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mean and covariance matrix for the predictor Tij, j “ 1, . . . , ni for the ith subject. With estimated

object responses pm̂i‘p0q, m̂i‘p1qq in hand, we proceed with the GFR implementation to recover

the effect of covariates Z, where ζ̂‘pzq “ pζ̂0pzq, ζ̂1pzqq⊺ and

ζ̂kpzq “argmin
µ1PM

1

n

n
ÿ

i“1

sinpZi, zqd2 pµ1, m̂i‘pkqq , k “ 0, 1, (13)

where the empirical GFR weights are given by

sinpZi, zq “ 1 ` pZi ´ Z̄q
⊺Σ̂´1

Z pz ´ Z̄q, (14)

Z̄ and Σ̂Z being the sample mean and covariance matrix for the predictor Zi, i “ 1, . . . , n.

Theorem 2. Under assumptions (R0)-(R2) in the Appendix it holds that

dM

´

ζ̂‘pzq, ζ‘pzq

¯

“ OP pn´1{2
q.

Next we discuss the more realistic case where responses do not lie exactly on the underlying

geodesic paths but instead are perturbed from those on the path as per (2), (4). To this end, let

pΩ˚,F˚, P ˚q be the underlying probability space on which the observed data pTij, Yijq are defined

for the ith subject, i “ 1, . . . , n, j “ 1, . . . , ni. Since the mechanism that generates the data are

independent as per (A1), pΩ˚,F˚, P ˚q can be perceived as a product space of two probability

spaces: pΩ1,F1, P1q, on which the M-valued geodesic tγ
piq
νi0,νi1ptq : t P r0, 1su connecting the two

points νi0 and νi1, is defined; and pΩ2,F2, P2q , on which the observed time points Tij and the random

perturbation maps Pij associated with the noisy observation Yij are defined. Thus, one can attribute

the randomness of the noisy observations to three sources, Yij “ Pij

”

γ
piq
νi0,νi1pTijq

ı

“ fpω1, ω2, ω3q,

where ω1 is a random element in pΩ1,F1, P1q that generates the endpoints of the true geodesic

trajectory, thus generating the underlying geodesic; pω2, ω3q P pΩ2,F2, P2q , where ω2 generates the

Tij and ω3 generates Pij for j “ 1, . . . , ni; i “ 1 . . . , n. For the special case of random effects models

in Euclidean space, pΩ1,F1, P1q is the underlying probability space for random slope and intercept.

Note that fixing some element ω1 P Ω1 corresponds to a realization of the M-valued underlying

geodesic process. Also, as per assumption (A1), given a ω1 P pΩ1,F1, P1q , pT¨j,P¨jq are independent
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in pΩ2,F2, P2q for all j “ 1, . . . , ni and do not depend on ω1. Suppose that for a given ω1 P

pΩ1,F1, P1q, the geodesic γpω1q
ν0,ν1 is observed at m random time points.

We use notations γpω1q
ν0,ν1p¨q,Ppγ

pω1q
ν0,ν1p¨qq and T to represent the corresponding quantities for the

underlying geodesic, noisy observation and the random time point, respectively, for any given ω1 P

pΩ1,F1, P1q. Denote by EΩ2 the expectation with respect to the probability measure P2. For any t P

r0, 1s, define γpω1q
ν0,ν1ptq “ argmin

µPM
EΩ2

”

d2pPpγ
pω1q
ν0,ν1p¨qq, µq|T “ t

ı

. We make the following small errors

assumption, which mean that errors implemented in the form of perturbations are asymptotically

negligible, uniformly across all realizations of the geodesic paths,

(A2) EΩ2

”

d2
´

P
´

γ
pω1q
ν0,ν1pT q

¯

, γ
pω1q
ν0,ν1pT q

¯ı

“ O pα2
nq , with αn Ñ 0 and nα2

n Ñ 8.

For classical Euclidean linear random effects models with an additive error structure, this small

errors assumption is not required due to the availability of additive operations, permitting the

application of the law of large numbers and central limit theorem. None of these is available in

general geodesic spaces. A small error assumption is commonly required in nonlinear models with

measurement errors and instrumental variable models (Amemiya, 1985; Chen et al., 2011; Carroll

and Hall, 2004; Carroll et al., 2006; Schennach, 2016). Observing that the underlying true geodesic

trajectory for the ith individual given by γ
piq
νi0,νi1p¨q is a random realization corresponding to some

ω1 in the probability space pΩ1,F1, P1q, define the GFR model at the population level for any

ω1 P pΩ1,F1, P1q as

µ˚
ω1

ptq “ argmin
µPM

Hω1 pµ, tq , Hω1 pµ, tq “ EΩ2

“

wpT, tqd2pγpω1q
ν0,ν1

pT q , µq
‰

, (15)

where wpT, tq “ 1 ` pT ´ µT q⊺Σ´1
T pt ´ µT q is the GFR weight function with µT “ EpT q and

ΣT “ varpT q, as before, and Hω1 would be the objective function to minimize using global Fréchet

regression with a fixed target response on the geodesic for a given ω1 P pΩ1,F1, P1q , if there was no

error in the observations. Since in the error-free case the GFR path recovers the geodesic entirely,

γ
piq
νi0,νi1ptq equals µ˚

ω1
ptq, t P T for some ω1 P pΩ1,F1, P1q , i “ 1, . . . , n.

On the other hand, a GFR model based on the observed noisy responses, for any given ω1 P
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pΩ1,F1, P1q, can be defined as

µ̃ω1ptq “ argmin
µPM

Gω1 pµ, tq , Gω1 pµ, tq “ EΩ2

“

wpT, tqd2pP
`

γpω1q
ν0,ν1

p¨q
˘

pT q , µq
‰

, (16)

where the weight function wpT, tq for the global Fréchet regression is defined as before. In our

notation the GFR path mi‘ptq P M for the ith subject corresponds to µ̃ω1ptq, t P T for some ω1 P

pΩ1,F1, P1q. In other words, the quantities γpiq
νi0,νi1p¨q and mi‘p¨q, for i “ 1, . . . , n, are the subject-

level realizations of µ˚
ω1

p¨q and µ̃ω1p¨q, respectively for some random element ω1 P pΩ1,F1, P1q. We

require the following assumptions for all ω1 P pΩ1,F1, P1q.

(K1) For any given t P T , the Fréchet means µ˚
ω1

ptq and µ̃ω1ptq exist and are unique, and for any

ε ą 0 it holds that inf
dpµ˚

ω1
ptq,µqąε

“

Hω1 pµ, tq ´ Hω1

`

µ˚
ω1

ptq, t
˘‰

ą 0

and inf
dpµ̃ω1 ptq,µqąε

rGω1 pµ, tq ´ Gω1 pµ̃ω1ptq, tqs ą 0.

(K2) There exist constants C1 ą 0, β1 ą 1, such that for all η ą 0,

inf
ω1PpΩ1,F1,P1q

inf
dpµ˚

ω1
ptq,µqăη

”

Hω1pµ, tq ´ Hω1

`

µ˚
ω1

ptq, t
˘

´ C1d
`

µ˚
ω1

ptq, µ
˘β1

ı

ě 0.

Assumption (K1) is commonly used to establish consistency of an M -estimator (see Chapter 3.2

in Van der Vaart and Wellner (2000)). It ensures weak convergence of the empirical process Hω1 ´

Gω1 , which in turn implies convergence of the minimizers (Chen and Müller, 2022). Assumption (K2)

relates to the curvature of the objective function and is needed to control the behavior of the true and

perturbed objective functions Hω1 and Gω1 , respectively, near their minimizers. These assumptions

are satisfied for many random objects of interest (Petersen and Müller, 2019)).

The following lemma establishes a connection between the population level Fréchet means of

the responses lying exactly on a geodesic (given in (15)) and the perturbed responses situated near

but not on the geodesic (given in (16)).

Lemma 1. Under assumptions (A1),(A2) and (K1), (K2), for any given t P T ,

sup
ω1PpΩ1,F1,P1q

d
`

µ˚
ω1

ptq, µ̃ω1ptq
˘

“ Opαnq,

12



where αn is as defined in Assumption (A2). Further, for any i “ 1, . . . , n and any t P T ,

d
`

mi‘ptq, γpiq
νi0,νi1

ptq
˘

“ Opαnq.

The above lemma implies that for any individual i, the underlying geodesic trajectory γpiq
νi0,νi1p¨q

can be recovered pointwise with asymptotically negligible error by the GFR path for the ith in-

dividual arbitrarily closely; i “ 1, . . . , n. This suggests to estimate the underlying subject-specific

geodesic from the noisy observations for each subject by the same method as before, obtaining the

GFR path as in (12). Pointwise consistency of estimates is sufficient as one only needs to recover

the endpoints pνi0, νi1q of the geodesic. We follow the same approach as before to infer the effect of

the covariate Z by implementing (13). This is justified by the following result, which provides the

rate of convergence of the regression of the metric space-valued random effects on the covariate Z.

Theorem 3. Under assumptions (A1),(A2),(K1),(K2) and (R0),(R2) in the Appendix, for any

z P S Ă Rp with p ě 1,

dM

´

ζ̂‘pzq, ζ‘pzq

¯

“ OP pα1{2
n q.

From the definition of αn in assumption (A2), the rate is slightly slower than n´1{4.

4 Simulation studies

We report here only a subset of our simulation results for the important case of responses in the

space of univariate distributions endowed with the Wasserstein metric, while additional simulation

results for spherical data can be found in Section 6 in the Supplement.

The Wasserstein space of probability distributions that we consider here is as in Example 1,

with time-varying distributions as responses Y which can be represented by their quantile functions

QY p¨q. For each subject i, the random responses are constructed as repeated measurements around

some underlying geodesic path γpiq
νi0,νi1p¨q in the space pW2pMq, dW q. These underlying geodesic paths

were generated conditional on a covariate Zi P S Ă R, while the observed responses were sampled

on these geodesics and then perturbed, implementing the following steps. For each subject

Step 1. Generate Zi
i.i.d.
„ Unifp´1, 1q.
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Step 2. Generate ni random time points Tij
i.i.d.
„ Unifp0, 1q. We consider a dense design, where

ni “ 50, as well as a sparse design, where ni P t2, . . . , 5u with equal probability.

Step 3. Generate end points of the geodesics, νi0 and νi1, that depend on the external covariate

Zi in the following way. Representing νi0 and νi1 as quantile functions Qνi0p¨q and Qνi1p¨q, the

conditional expectation of νik given Z is modeled as

ErQνikp¨q|Zi “ z, Tij “ us “ ξu,z ` σu,zΦ
´1
r0,1s

p¨q, k “ 0, 1, j “ 1, . . . , ni, (17)

where Φr0,1sp¨q is the cdf of a standard normal distribution truncated on r0, 1s. Specifically, the

corresponding distribution function is given by

F pxq “
Φppx ´ ξu,zq{σu,zq ´ Φp´ξu,z{σu,zq

Φpp1 ´ ξu,zq{σu,zq ´ Φp´ξu,z{σu,zq
1r0,1spxq ` 1p1,8qpxq, x P R.

The distributional responses νi0 and νi1 are perturbed versions from model (17). We consider four

different simulation scenarios for location-scale families with varying sample sizes and perturbation

levels, for both sparse and dense sample designs. The global parameters considered in the following

data generation mechanisms are µ0 “ 0, σ0 “ 0.1, β1 “ 0.3, β2 “ 0.25, γ “ 0.3, ν1 “ 0.25, ν2 “ 1.

Setting I. The mean changes with the predictor values while the variance is constant. We gen-

erate the the auxiliary distribution parameters independently as µY |pZ “ z, T “ uq „ Nr0,1spξu,z, ν1q

and σY |pZ “ z, T “ uq “ σu,z, where ξu,z “ µ0 ` β1z ` β2u and σu,z “ 0.1. The corresponding

distribution is given by Qνik “ µY ` σYΦ
´1, k “ 0, 1, where Φ is the standard normal cdf.

Setting II. The mean remains constant, while the variance changes w.r.t to the predictor

values. Again, the distribution parameters are generated independently as µY |pZ “ z, T “ uq „

Nr0,1spξu,z, ν1q and σY |pZ “ z, T “ uq „ Gamma p
pσ0`γzq2

ν2
, ν2

pσ0`γzq2
q , such that ξu,z “ µ0 ` β2u and

σu,z “ σ0 ` γz.

Setting III. The mean and variance both vary w.r.t to the predictor values. To this end,

µY |pZ “ z, T “ uq „ Nr0,1spξu,z, ν1q and σY |pZ “ z, T “ uq „ Gamma p
pσ0`γzq2

ν2
, ν2

pσ0`γzq2
q, indepen-

dently sampled such that ξu,z “ µ0 ` β1z ` β2u and σu,z “ σ0 ` γz.

Setting IV. After sampling the distribution parameters as in the previous setting, the resulting

distribution is then “transported” in Wasserstein space via a random transport map T , that is
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uniformly sampled from a family of perturbation/ distortion functions tTk : k P ˘1,˘2,˘3u, where

Tkpaq “ a ´
sinpπkaq

|kπ|
. The transported distribution is given by T#pξu,z ` σu,zΦ

´1
r0,1sp¨qq, where T#p

is a push-forward measure such that T#ppAq “ pptx : T pxq P Auq, for any measurable function

T : R Ñ R, distribution p P W , and set A Ă R. We sample the random transport map T uniformly

from the collection of maps described above; p denotes a truncated Gaussian distribution with

parameters ξu,z and σu,z, and W is the metric space of distributions equipped with the Wasserstein

metric. The distributions thus generated are not Gaussian anymore due to the transportation. The

Fréchet mean can be shown to remain at ξu,z ` σu,zΦ
´1p¨q as before. Then the geodesic in the

quantile space connecting Qνi0p¨q and Qνi1p¨q is given by Qγ
piq
νi0,νi1

p¨q : t ÞÑ p1 ´ tq Qνi0 ` t Qνi1 . For

the ith subject, ni points are generated on the true underlying geodesic Qγ
piq
νi0,νi1

ptq, t P r0, 1s.

Step 4. Perturb the true quantile functions Qγ
piq
νi0,νi1

pTijq situated on a geodesic such that the ob-

served responses remain valid quantile functions. The perturbed/noisy distributional responses,

represented as quantile functions, are constructed as Q̃ : r0, 1s Ñ r0, 1s such that

Q̃puq “ Qpsq ` ε∆psq, s P r0, 1s, (18)

where ∆psq “ αnQpsqp1 ´ Qpsqq, 0 ă αn ă 1 and ε “ ˘αn with equal probability 1{2. With

a sufficiently small choice of αn P p0, 1q, Q̃ is an increasing quantile function in r0, 1s. From

the construction we have ∆psq ď min tQpsq, 1 ´ Qpsqu for all s P r0, 1s. Note that for 0 ă αn ă 1,

Q̃1 “ pQ˘αn∆q1 ą 0, as long as the true quantile functions Q are strictly increasing and E
´

Q̃
¯

“ Q.

The observed responses are thus per (18) Q̃YijpTijq “ Qγ
piq
νi0,νi1

pTijq ˘ α2
nQγ

piq
νi0,νi1

pTijq p1 ´ Qγ
piq
νi0,νi1

pTijqq .

We implemented the proposed model as per (12) and (13).

The effect of the perturbation parameter αn is demonstrated in Figure 1 for one simulation run

in Setting IV. True, observed, and predicted distributions are shown for the sparse design case. The

predicted distributions are obtained for the observed values of the covariate/predictor Zi for all

t P r0, 1s, represented as densities. For small perturbations, the observed distributions are seen to

be close to the underlying true geodesic path of distributions, while for larger levels of perturbation

deviations are larger. However, estimated/predicted distributions throughout remain close to the

true distributions, providing evidence for the efficiency of the proposed random effects model.

We illustrate the effects of the covariate Z on the model fits across different simulation settings

15



α1 = 0.01 α2 = 0.1 α3 = 0.5

t=
0

t=
0.5

t=
1

0.
00

0.
25

0.
50

0.
75

1.
00

0.
00

0.
25

0.
50

0.
75

1.
00

0.
00

0.
25

0.
50

0.
75

1.
00

0

2

4

0

2

4

0

2

4

Domain

D
en

si
tie

s

 Observed True Estimated

Figure 1: Visualization of the true (red), observed (perturbed, green), and estimated (blue) distri-
butional object responses as densities for a randomly selected simulation sample generated under
setting IV with a sparse design where each subject has 2 to 5 repeated measurements, compar-
ing varying perturbation levels αn “ 0.01, 0.1, 0.3 (left, middle and right). The densities lying on
a geodesic in the Wasserstein space of distributions are displayed at three different time points,
t “ 0, 0.5, and 1 (top, middle, and bottom rows, respectively).

for one simulation run in Figure 2. Again data are generated for a sparse design for each of the

settings mentioned above with sample size n “ 500, where the observed distributions are generated

around the true underlying geodesics in the Wasserstein space and observations are perturbed

at perturbation level αn “ 0.1. To assess the covariate effects, we fitted the model at covariate

levels that correspond to the 10%, 50%, and 90% quantiles of the covariate Z. One finds that at

all time points and across all settings the predicted densities closely approximate the truth. This

demonstrates that in the small error case the proposed random effects model and its implementation

is well suited to recover the true trajectories when given the covariate information. For setting I

with a location shift in the data generation mechanism, the modes of the densities shift towards the

right, i.e., a higher value of the covariate is associated with a right shift in the estimated densities.

For setting II, a higher value of the covariate is associated with an increase in the spread of the

distribution. Settings III and IV capture the combined effect of location and scale shifts. The

location, spread, skewness, and overall shape of the predicted densities change as expected with
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increasing levels of the predictor values. One also observes a rightwards shift of the distributions

over time, an expected consequence of the generation of the geodesics in distribution space.
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Figure 2: The time-dynamic effect of the baseline covariate for distributional objects represented
as densities for a randomly selected simulation sample, displaying true (red) and estimated (blue)
densities for simulation settings I-IV (columns from left to right). Data were generated under a
sparse design, where each subject has 2 to 5 repeated measurements and where response distributions
were perturbed with a fixed small perturbation level α “ 0.1. Estimated/predicted densities are
shown for the 10% (solid), 50% (long-dashed) and 90% (dotted) quantile levels of the covariate.
The top, middle, and bottom panels correspond to the prediction/estimation at times t “ 0, 0.5,
and 1, respectively.

We further studied the effect of sample size and sample design (sparse or dense) for the four

simulation settings on the performance of the proposed method while keeping the perturbation level

fixed at α “ 0.1. The results of 500 Monte Carlo simulation runs are shown in Figure 3, where

we display boxplots of Integrated Square Error (ISE) as a measure of discrepancy between the true

and the estimated distributions. Specifically,

ISEr “

ż

zPS

ż

tPr0,1

dW pY r
pt, zq, Ŷ r

pt, zqqdtdz, (19)

where Y rpt, zq and Ŷ rpt, zq denote, respectively, the true distributional object lying on a geodesic
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(without perturbation) in the Wasserstein-2 space and the estimated object at time point t and

covariate value z for the rth simulation run, where r “ 1, . . . , 500. We observe a decrease in ISE for
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Figure 3: Boxplots of Integrated Squared Errors (ISE) calculated as per (19), over 500 simulation
runs for the four simulation settings (displayed in the panels clockwise from the top left corner).
Results are shown for sample sizes n “ 50, 400, 1000 for both sparse (blue) and dense (red) designs.

increasing sample size and deviations are generally higher if both the location and scale parameters

are varied as a function of the covariate.

4.1 Simulation study: Responses lying on the surface of a sphere

We applied the proposed approach targeting general random objects as responses lying on the surface

of a sphere. The numerical results describing the data generation mechanism and evaluating the

performance of the proposed method are discussed in details in subsection 4.1 of the Supplement.
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5 Data analysis

5.1 Longitudinal fMRI data

Resting-state functional Magnetic Resonance Imaging (fMRI) methodology makes it possible to

study brain activation and to identify brain regions or cortical hubs that exhibit similar activity

when subjects are in the resting state (Allen et al., 2014). FMRI measures brain activity by

detecting changes in blood-oxygen-level-dependent (BOLD) signals in the brain across time. The

analysis of brain functional connectivity at the subject level typically relies on a specific spatial

parcellation of the brain into a set of regions of interest (ROIs). Temporal coherence between

pairwise ROIs is usually measured by the so-called Pearson correlation coefficient matrix (PCC) of

functional connectivity obtained from the fMRI time series, which is an mˆm correlation matrix if

one has m distinct ROIs. In this analysis, we will use PCC matrices derived from fMRI as responses.

Alzheimer’s Disease has been found to be associated with anomalies in the functional integration of

ROIs (Damoiseaux et al., 2012; Zhang et al., 2010) that may be time-varying, along with changes

in the brain due to aging for cognitively normal subjects. This provides the motivation to explore

the time-varying regression relationship between the connectivity correlation matrix objects and

relevant external covariates.

Available data are from the Alzheimer’s Disease Neuroimaging Initiative (ADNI) database

(adni.loni.usc.edu), where PCC matrices derived from fMRI signals are observed sparsely over time

for each subject in a sample of n “ 340 subjects composed of 155 Cognitive Normal (CN) subjects

and 185 Alzheimer’s patients with mild cognitive impairment (MCI) with ages ranging from 55.7 to

94.8 years. At least 2 scans are available for each subject but not more than 9 scans, with a median

of 4 scans, so these are sparsely sampled longitudinal data. We normalized the time scale of the

measurements to the interval T “ r0, 1s, where for each subject the time at which the first scan is

recorded is defined as the origin of the time scale t “ 0 and t “ 1 is 7 (9) years after the first scan for

the CN (MCI) subjects. The pre-processing of the BOLD signals adopted standard procedures of

slice-timing correction, head motion correction, and other standard steps. Then m “ 90 brain seed

voxels for each subject were extracted for the ROIs of the automated anatomical labeling (AAL)

atlas (Tzourio-Mazoyer et al., 2002) to parcellate the whole brain into 90 ROIs, with 45 ROIs in
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each hemisphere, and the signals were converted to a 90 ˆ 90 PCC matrix, which corresponds to

the available observation for each time point and subject.

The structure of the space of random objects always depends on the choice of the metric, which

is often chosen for convenience and interpretability in the context of specific data applications. Here

we endow the space of symmetric positive definite correlation matrices M with the power-Euclidean

metric dP with the power α “ 1{2 (Dryden et al., 2010),

dP pA,Bq “
1

α
}Aα

´ Bα
}F for any A,B P M. (20)

Here Sα “ UΛαU⊺, for the usual spectral decomposition of S “ UΛU⊺ with an orthogonal matrix

U and a diagonal matrix Λ with strictly positive entries and } ¨ }F denotes the Frobenius norm.

The space M is a uniquely extendable geodesic space. To implement the proposed random effects

model, in a first step we recovered the underlying subject-specific trajectories by estimating the

matrices at the endpoints 0 and 1, and then regressed these on the covariate Z, which was chosen

as the two-dimensional vector (Age, ADAS-Cog-13 score) for each subject, obtained at the time of

the first scan t “ 0. For Alzheimer’s studies, the ADAS-Cog-13 score (henceforth referred to as

the C score) is a widely-used measure of cognitive performance. It quantifies impairments across

cognitive domains (Kueper et al., 2018); higher scores indicate more serious cognitive deficiency.

To illustrate the effect of the C-score, we fix the age of the subjects at its mean level (74

years) and provide the fitted model at the 10%, 50%, and 90% quantiles of the C-score. Figure 4

demonstrates the trend for the temporal correlations for varying C-score levels at different times of

the study for the CN subjects. One finds that the overall correlation strengths diminish with higher

C-scores. Further, comparing the rows for each panel, we find that correlations are overall weaker

at time 1 than at time 0. A similar pattern with overall weaker connections emerges for the MCI

subjects (see Figure 17 in the Supplement).

To further elicit the time-varying effects of the C-score on the PCC matrix geodesics, we subtract

the predicted matrices at time 0 from the predicted matrices at time 1, for each of the three covariate

quantiles, separately for CN and MCI subjects. In Figure 5, the columns (from left to right) display

the difference of the fitted PCC matrices at time 1 and time 0, at the z1 “ 10%, z2 “ 50%, and

z3 “ 90% quantiles of the C-score, respectively, while the other covariate age is fixed at its mean
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Figure 4: Estimated/predicted PCC matrices obtained from the proposed random effects model for
CN subjects. The top and bottom rows correspond to the predicted correlation matrices at times
t “ 0 and t “ 1 respectively, while within each row the left, middle, and right panels depict the
fits at the 10%, 50%, and 90% quantiles of the C-score with age fixed at its mean level. Positive
(negative) values for correlations are drawn in red (blue).

level. The top (bottom) row corresponds to the CN (MCI) subjects. For higher score levels, the

inter-hub connections are found to become weaker. The effect is clearly more pronounced for the

MCI subjects as compared to the CN subjects, MCI subjects losing connectivity at a faster rate.

We also converted the PCC matrices into simple, undirected, weighted networks to facilitate

interpretation by setting diagonal entries to 0 and hard thresholding the absolute values of the

remaining correlations. We kept the 15% strongest connections and discarded the others (Schwarz

and McGonigle, 2011), converting the PCC into weighted adjacency matrices. The adjacency ma-

trix computed from a PCC matrix is given by A “ paijqi,j“1....,m, indicating the i-th and j-th hubs

in the brain are either connected by an edge of weight aij ą 0, or else unconnected if aij “ 0. To

represent the resulting estimated brain networks for changing covariate levels we use network sum-

maries such as modularity, a summary measure of network segregation (Newman, 2006b) and global

efficiency (Alexander-Bloch et al., 2013), a measure of network integration. With aij representing

the edge weight between nodes i and j, modularity is defined as Q “ 1
2L

ř

i,j

”

aij ´
kikj
2L

ı

δpci, cjq,

where L is the sum of all of the edge weights in the graph, ki is the sum of the weights of the edges
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Figure 5: Differences of the predicted PCC matrices at time 1 and at time 0 for both CN (top)
and MCI (bottom) subjects. The columns, from left to right, correspond to the differences of the
predicted PCC matrices, fitted at the 10%, 50%, and 90% quantiles of the C-score, respectively,
while the second covariate age is fixed at its mean level. Higher (lower) values of the difference are
shown in red (blue).

attached to node i, ci, cj are the communities of the nodes; and δpx, yq “ 1 if x ‰ 1 and 0 otherwise.

Table 1 shows modularity and global efficiency of the brain networks for CN and MCI subjects at

times 0 and 1 estimated at the 10%, 50%, and 90% quantiles of the C-score, respectively, while

covariate age is fixed at its mean level. Both indices decrease for higher C-scores and over time

where the decrease over time is much more pronounced for MCI subjects, in line with the previous

findings for PCC matrices.

We also evaluated the modularity of the predicted brain networks continuously over time between

time 0 and 1 from the estimated PCC matrices on geodesics in the space of correlation matrices,

see Figure 6. The modularity for the highest C-scores generally is lowest and declines throughout

time, which suggests less and more rapidly declining connectivity. In contrast, modularity for low

and median C-scores stays stable for a longer period, where the contrast is even higher for MCI

subjects. This indicates that connectivity decline is higher for those starting with higher C-scores

and lower connectivity.

The validity of the fits obtained with the proposed random effects model can be assessed by
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Table 1: Modularity and global efficiency of the estimated brain networks obtained for CN and MCI
subjects by hard thresholding at times t “ 0 and t “ 1, for the 10%, 50%, and 90% quantiles of the C-score,
while covariate age is fixed at its mean level.

CN MCI
Modularity Global Efficiency Modularity Global Efficiency
t “ 0 t “ 1 t “ 0 t “ 1 t “ 0 t “ 1 t “ 0 t “ 1

10% Quantile
of Total Score 0.534 0.479 0.499 0.387 0.536 0.593 0.520 0.368

50% Quantile
of Total Score 0.528 0.474 0.485 0.371 0.535 0.541 0.486 0.365

90% Quantile
of Total Score 0.505 0.462 0.472 0.355 0.531 0.465 0.387 0.322

CN MCI

0.00 0.25 0.50 0.75 1.00 0.00 0.25 0.50 0.75 1.00
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Figure 6: Modularity of the estimated brain networks over time for the CN and MCI subjects in
the left and right panels, respectively). The covariate levels at which the networks are estimated
are the 10% (red), 50% (blue) and 90% (purple) quantiles of the C-score, with the other covariate
age fixed at its mean level.

its out-of-sample prediction performance. We randomly split the dataset into a training set with

sample size ntrain and a test set with the remaining ntest subjects. We then take the fitted objects

ζ̂‘p¨q obtained from the training set and predict the responses in the test set using the covariates

present in the test set. As a measure of the efficacy of the fitted model, we compute the root mean

squared prediction error

RMPE “

”

1
ntest

řntest
i“1

1
ni

řni

j“1 d
2
P

´

Y test
ij , Ŷ test

ij

¯ı´1{2

,
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where Y test
ij “ Y test

ij pTijq denotes the ith observed response at time Tij, j “ 1, . . . , ni, for the ith

subject in the test set, Ŷ test
ij “ Ŷ test

ij pTijq denotes the predicted object at the covariate level Zi for

the predictors in the test set, and dP the power metric in M, with power α “ 1{2. We repeat this

process 100 times and compute the RMPE for each split for n “ 155 (n “ 185) for the CN (MCI)

subjects, separately, with results in Table 2.

Table 2: Average Root Mean Prediction Error (RMPE) over 100 repetitions, as obtained from
predicted responses from the proposed two-step method. Here, ntrain and ntest denote the sample
sizes for the split training and testing data for CN and MCI subjects.

ntrain ntest First Quartile Mean Median Third Quartile.
CN 100 55 0.134 0.204 0.194 0.266
MCI 120 65 0.139 0.199 0.202 0.271

5.2 Human mortality data: Remaining life distributions as object re-

sponses

We also analyzed lifetables reflecting remaining life distributions human mortality across 28 coun-

tries correspond to distributional responses, coupled with various country-specific covariates with

the proposed random effects model. Details can be found in the Supplement.

6 Concluding remarks

We present a novel random/mixed effects modeling framework for longitudinal/repeated measure-

ments data when data are random objects that reside in a geodesic metric space. The model is

an extension of classical random effects models. The basic linearity assumptions in the Euclidean

setting become geodesic assumptions for object data; linearity emerges as a special case.

The proposed model and approach has two components. The first component is concerned with

modeling and implementing the relation between sparse observations and the underlying geodesics

and reflects the subject-specific random effects, in analogy to the classical model, where the intercept

and slope of random regression lines constitute the random effects. The second component charac-

terizes the fixed effects that are common to all subjects by incorporating information from external

covariates. The connection between the intrinsic geometry of the underlying metric space and con-
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ditional Fréchet means implemented through Fréchet regression is the key to achieve interpretable

estimation with asymptotic convergence guarantees.

A. Technical assumptions on second-step Fréchet regression

In Section 3 the final estimates obtained from regressing object responses pm̂i‘p0q, m̂i‘p1qq P pMˆ

M, dMq on the Euclidean predictor Zi P S Ă Rp, p ě 1, i “ 1, . . . , n, using model (9), are

ζ̂‘pzq “ pζ̂0pzq, ζ̂1pzqq⊺, where

ζ̂kpzq “ argmin
µPM

M pkq
n pµq, where M pkq

n pµq “
1

n

n
ÿ

i“1

sinpZi, zqd2 pµ, m̂i‘pkqq , k “ 0, 1, (21)

with empirical weights for the GFR estimator as in (14). Define the intermediate targets

ζ̃kpzq “ argmin
µPM

M̃ pkq
n pµq, where M̃ pkq

n pµq “
1

n

n
ÿ

i“1

sinpZi, zqd2 pµ,mi‘pkqq , k “ 0, 1, (22)

where the empirical GFR weights are defined as before. When object responses lie on geodesics

without error, the GFR paths recover the underlying geodesic paths and estimates ζ̂k coincide with

the ζ̃k in (22) for k “ 0, 1. Next we list the assumptions required for the theory of GFR (Petersen

and Müller, 2019) that we adopt for this estimation step.

(R0) The objects ζkpzq, ζ̃kpzq, and ζ̂kpzq, k “ 0, 1, exist and are unique, the latter two almost surely

and for any ε ą 0,

inf
dpµ,ζkpzqqąε

M pkq
pµ, zq ´ M pkq

pζkpzq, zq ą 0, k “ 0, 1.

(R1) For k “ 0, 1, let Bδpζkpzqq be the ball of radius δ centered at ζkpzq and Npε, Bδpζkpzqq, dq be

its covering number using balls of size ε. Then

a

1 ` logNpε, Bδpζkpzqq, dqdε “ Op1q as δ Ñ 0.
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(R2) There exist η̃k ą 0, C̃k ą 0, possibly depending on z, such that dpµ, ζkpzqq ă η̃k implies

M pkq
pµ, zq ´ M pkq

pζkpzq, zq ě C̃kd
2
pµ, ζkpzqq, k “ 0, 1.

Assumption (R0) is commonly used to establish the consistency of an M-estimator such as mi‘ptq;

see Chapter 3.2 in Van der Vaart and Wellner (2000). In particular, it ensures that weak convergence

of the empirical process M̃n to the population process M implies convergence of their minimizers.

Furthermore, existence follows immediately if M is compact. The conditions on the covering

number in Assumption (R1) and curvature in Assumption (R2) arise from empirical process theory

and control the behavior of M̃n ´ M near the minimum, which is necessary to obtain rates of

convergence.
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Supplementary Materials

S.1. Additional data illustration and simulation results

This section provides further illustrations of data applications and simulations. Random objects

considered in the additional data demonstrations discussed in this section are univariate probability

distributions with compact support endowed with the Wasserstein-2 metric (applied to human

mortality data) and data that reside on the surface of a sphere, endowed with the geodesic distance.

Further illustrations of the proposed method include additional plots for the ADNI study, continuing

from Section 5.1 of the main manuscript.

S.1.1. Simulation study: Responses lying on the surface of a sphere

We next implement our methodology when the responses lie on a Riemannian manifold. In partic-

ular, we consider responses lying on the surface of a unit sphere S2 Ă R3 with the center being the

origin. The geodesic distance between any two points ω1 and ω2 lying on the surface of the unit

sphere S2 is given by dgpω1, ω2q “ arccospω⊺
1ω2q. We first model the conditional expectation of the

end points of the underlying subject-specific geodesic, conditional on the covariates Z, as

Epνik|Zi “ z, Tij “ uq “ ξu,z

“p
a

p1 ´ z2q cospπuq,
a

p1 ´ z2q sinpπuq, zq, z P p0, 1q, k “ 0, 1, j “ 1, ni. (23)

The above quantifies the true time-varying regression function conditional on the baseline covariates.

In order to generate random realizations of the end-points according to model (23), we first sample

the time points at which the repeated measurements are made for each subject, denoted by Tij,

according to a sparse or a dense design as before (see Section 4 in the main manuscript) such that

Tij P r0, 1s. Further, the baseline covariates Zi are generated i.i.d. from Unifp0, 1q for j “ 1, . . . , ni,

i “ 1 . . . , n.

The true responses on the surface of the sphere S2 at the two end points of the underlying

geodesic corresponding to the ith individual, for i “ 1, . . . , n, are then constructed as follows. A

bivariate noise random vector is generated on the tangent space T
γ

piq
νi0,νi1

pu,zq
pΩq. To this end, we
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define, for j “ 1, ni, ψij “ arcsinpTijq and θij “ πTij. An orthonormal basis for the tangent

space is denoted by pb
p1q

ij , b
p2q

ij q, where bp1q

ij “ pcospψijq cospθijq, cospψijq sinpθijq,´ sinpψijqq⊺ and bp2q

ij “

psinpθijq,´ cospθijq, 0q⊺. Adding a noise level σ2 “ 0.2, bivariate random vectors Aij “ ci1b
p1q

ij `ci2b
p2q

ij

are computed, where Ci “ pci1, ci2q⊺
i.i.d.
„ N2p0, σ

2I2q. Finally, the responses are generated as

νik “ cos p∥Aij∥Eq ζTij ,Zi
` sin p∥Aij∥Eq

Aij

∥Aij∥E
, j “ 1, ni, k “ 0, 1,

with ∥¨∥E being the Euclidean norm. The simulation steps above produce a point νik on the surface

of the two-dimensional sphere at the endpoints k “ 0, 1 of some underlying geodesic paths on the

surface of the sphere. To complete this step, the geodesic path connecting νi0 and νi1 is given by

t ÞÑ 1
sinω

rνi0 sinpp1 ´ tqωq ` νi1 sinptωqs, t P r0, 1s, where ω “ arccospν⊺i0νi1q.

Now, the observable noisy responses are obtained by adding a small perturbation to the random

end-points on the geodesic. To this end, we represent any point on the surface of the sphere in

spherical coordinates and add noise to the angle the point makes with the z´ axis. A point P on

the surface of the sphere given by P “ pρ sinϕ cos θ, ρ sinϕ sin θ, ρ cosϕq, where ρ is the distance

from P to the origin, θ is the angle between the positive x-axis and the line segment from the origin

to the projection of P to the xy´plane, and ϕ is the angle between the positive z´axis and the

line segment from the origin to P . A noisy observation around P with a perturbation level αn is

generated as P 1 :“ pρ sinpϕ ` εq cos θ, ρ sinpϕ ` εq sin θ, ρ cospϕ ` εqq, where ε “ ˘αn with equal

probability 1{2. For this perturbation scheme, the perturbed point P 1 has norm ρ2, i.e., P 1 still lies

on the surface of the sphere S2. Further, Epd2gpP, P 1qq “ arccospP ⊺P 1{ρ2q “ α2
n Ñ 0 as n Ñ 8.

Thus, using the polar coordinate representation of every point generated on the geodesic, the noisy

observations are procured as described above.

The simulation study is then carried out for different sample sizes n “ 50, 400, and 1000, for

both sparse and dense designs, while fixing the noise level at α “ 0.1. A measure of the efficacy for

the fits is constructed as the Integrated Squared Error (ISE) over 500 Monte Carlo simulation runs

as

ISEr “

ż

zPS

ż

tPr0,1

dgpY r
pt, zq, Ŷ r

pt, zqdtdz, (24)
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where Y rpt, zq and Ŷ rpt, zq denote, respectively, the true object on the two-dimensional sphere,

lying on a geodesic (without perturbation), and the estimated object at time point t and covariate

value z for the rth simulation run, where r “ 1, . . . , 500. Here dg denotes the geodesic distance

between two points on a sphere and is given by

dgpA,Bq “ arccospA⊺Bq.

where A and B are two points on the surface of a sphere. Figure 7 shows that with a denser design

n = 50 n = 400 n = 1000

0.07

0.09

0.11

0.13

IS
E

Dense design Sparse design

Figure 7: Boxplots of Mean Integrated Squared Errors (MISE) calculated as per (24), over 500
simulation runs and different sample sizes for object responses situated on the surface of a 2-
dimensional sphere, corresponding to setting I.

and higher sample size, the ISE reduces significantly, giving evidence for the asymptotic convergence

of the estimates to the true underlying object responses.

S.1.2. Data analysis: Remaining life distributions as object responses

The Human Mortality Database (https://www.mortality.org/) provides yearly life table data

for males and females and various countries. Here we study the time-varying association between

remaining life distribution and various socioeconomic indices at the country level and consider the

life tables for females over 30 calendar years, 1990 ´ 2019, for n “ 28 countries. We consider

the remaining life distribution Rptq “ P pT ď t|T ě 75q as responses, where T denotes age-at-

death and the remaining life distribution is considered on the interval r75, 120s (all in years). This

remaining life distribution and its density can be easily obtained from the available lifetable data

33

https://www.mortality.org/


that correspond to histograms with bin width one year by adding a smoothing step, for which we

used the R package frechet (Chen et al., 2020) with bandwidth 2 years.

We then obtained a sample of time-varying univariate probability distributions which are the re-

sponses for n “ 28 countries, where the time axis represents 30 calendar years from T :“ r1990, 2019s

and the observation made at each calendar year for each country corresponds to the remaining life

distribution over the age interval r75, 120s.

For the first-step regression, we fit model (12) to obtain the estimates for the remaining life

distribution at the first (time 0, corresponding to the year 1990) and last (time 1, corresponding to

the year 1990) point of our time domain. The inherent assumption is that, for each country, the

remaining life distributions over the years are observed around some geodesic in the Wasserstein-2

space of distributions with small error/perturbation, where the underlying geodesic connects the two

distribution objects corresponding to time 0 and time 1. The fitted responses m̂i‘p0q and m̂i‘p1q

are then treated as a summary of the time-varying remaining life distributions for the ith country,

i “ 1, . . . , 28, and are carried forward as the paired distributional response to the second-step

regression as per (13).

For implementing the second step regression as per model (8), we consider a 4´ dimensional base-

line covariate for each country, where the covariates for the ith country represent (1) Unemployment

rate (% of the total labor force) (2) Fertility Rate (Births per women), (3) GDP per capita- Inter-

national purchasing power parity, and (4) Population growth (annual %), measured in the calendar

year 1990. The data is obtained from the World Bank Database at https://data.worldbank.org.

Our aim is to quantify the effects of this baseline/ external covariate, possibly changing over the

calendar years, on the remaining life distributions. The second-step regression with the paired ob-

ject responses pm̂i‘p0q, m̂i‘p1qq and Euclidean covariates Zi, i “ 1 . . . , n, produces the fitted objects

ζ̂‘pzq “ pζ̂0pzq, ζ̂1pzqq⊺ over varying values Z “ z.

It is of interest to see how the estimated distributions at times 0 and 1 given by ζ̂0pzq and

ζ̂1pzq, respectively, change over varying levels of the baseline covariate Z. Here Z is a 4-dimensional

predictor. To elicit the effect of each component of Z, we vary the levels of that component from low

to high while keeping the other three components fixed at their mean level. For example, Figure 8

illustrates how the remaining-life density changes with increasing levels of GDP per capita, while

the other three predictors are kept fixed at their mean levels. The left and right panels display the
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fitted densities for the calendar years 1990 and 2019 respectively. The fitted densities are color coded

such that blue to red indicates smaller to larger value of GDP. We find that smaller values of GDP

are associated with left-shifted remaining life distributions, while a larger GDP value corresponds

to a shift of the mode of the age-at-death toward the right. Further, the densities for the year 1990

are more left-skewed than the ones for 2019, indicating an increasing right shift of the remaining

life distribution as calendar time progresses. The time effect and GDP effect are seen to be not

simply additive but the GDP effect is more pronounced in 2019 than in 2010.
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Figure 8: Effect of the covariate GDP per Capita, at the beginning and end of the time domain.
The changes in density of the remaining life distribution after age 75 as GDP per Capita rate ranges
from low (blue) to high (red) are displayed when the other predictors are fixed at their mean level.
The left and right panels show the fits at the calendar years 1990 and 2019, respectively.

For increasing levels of the fertility rate, unemployment rate, and population growth percentage,

similar patterns for the time-varying effect of these covariates are observed, but to a lesser extent

(See Figures 9, 10, and 11, respectively).

For each country, the fitted geodesics in the Wasserstein space of distributions summarize the

time dynamics of the remaining life distributions along with the effects of the covariates. We further

demonstrate the interpretability of the proposed random effects model by displaying the fits at the
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Figure 9: Effect of the covariate Fertility rate, at the beginning and end of the time domain. The
changes in density of the remaining life distribution after age 75 as Fertility rate ranges from low
(blue) to high (red) are displayed when the other predictors are fixed at their mean level. The left
and right panels show the fits at the calendar years 1990 and 2019, respectively.

beginning and end of the time domain when varying the value of one predictor at the 10%, 50%, and

90% quantile levels, while keeping the other two predictors fixed at their mean. We then compute

the estimated densities situated on the fitted geodesic in the distribution space corresponding to

a grid of time points in r1990, 2019s. The left, middle, and right panels of Figure 12 display the

estimated densities at the calendar years 1995, 2000, and 2008, respectively. For each panel, the

red, blue, and green lines correspond to the 10%, 50%, and 90% quantile values for GDP per

Capita, while the other three predictors are kept fixed at their mean levels. We observe a shift in

the remaining life densities towards the right over the years, thus indicating improved remaining

survival as calendar time progresses.

Similar interpretations emerge for the other three predictors from the patterns displayed in

Figure 13, 14, and 15. We observe that a higher value of the covariate levels is generally associated

with right-shifted remaining life distribution,

To summarize, in Figure 16, we illustrate the observed densities for the remaining life distri-
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Figure 10: Effect of the covariate Percentage of Population Growth, at the beginning and end of the
time domain. The changes in density of the remaining life distribution after age 75 as Percentage
of Population Growth ranges from low (blue) to high (red) are displayed when the other predictors
are fixed at their mean level. The left and right panels show the fits at the calendar years 1990 and
2019, respectively.

butions for a few selected countries over three selected calendar years, along with the densities

predicted at the observed baseline-covariate values for that country. The six panels, clockwise from

top-left, correspond to Australia, Finland, France, United States, Netherlands, and Japan; while

red, green, and blue colors indicate the calendar years 1995, 2000, and 2008, respectively. The

observed and predicted densities are plotted in solid and dashed lines for each country and each

calendar year, and follow the same temporal pattern. The fits are close to the observations, thus

giving evidence for the validity of the model. The small discrepancies in the estimated-vs-observed

densities towards the beginning and end of the domain could be caused by boundary effects of the

regression fits.

Finally, the performance of the fits is measured by the out-of-sample prediction performance of

the proposed method. For this, we first randomly split the dataset into a training set with sample

size ntrain “ 18 and a test set with the remaining ntest “ 10 subjects (countries). We then consider

the fitted objects ζ̂‘p¨q obtained from the training set and predict the responses in the test set using
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Figure 11: Effect of the covariate Unemployment Rate, at the beginning and end of the time domain.
The changes in density of the remaining life distribution after age 75 as Unemployment Rate ranges
from low (blue) to high (red) are displayed when the other predictors are fixed at their mean level.
The left and right panels show the fits at the calendar years 1990 and 2019, respectively.

the covariates present in the test set. As a measure of the efficacy of the fitted model, we compute

the root mean squared prediction error as

RMPE “

«

1

ntest

ntest
ÿ

i“1

1

ni

ni
ÿ

j“1

d2W

´

Y test
ij , Ŷ test

ij

¯

ff´1{2

, (25)

where Y test
ij “ Y test

ij pTijq denotes the ith observed response at time Tij, j “ 1, . . . , ni, for the ith

subject in the test set, Ŷ test
ij “ Ŷ test

ij pTijq denotes predicted object for the second-step fits at the

covariate level Zi for the predictors in the test set. dW denotes the Wasserstein-2 metric in the

space of distribution objects. We repeat this process 500 times and compute RMPE for each split

for n “ 28 countries. separately. The summary of the RMPE is shown in Table 3.
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Figure 12: Effect of the predictor GDP per Capita, evaluated at points on the fitted geodesic. The
left, middle, and right panels show the fits for the years 1995, 2000, and 2008 respectively, where
the remaining life densities are fitted at the 10% (red), 50% (blue) and 90% (green) quantile levels
of GDP per Capita, while the other predictors are fixed at their mean levels.

Table 3: Average Root Mean Prediction Error (RMPE) over 500 repetitions, as obtained from
predicted responses from the proposed two-step method. Here, ntrain and ntest denote the sample
sizes for the split training and testing datasets respectively.

ntrain ntest First Quartile Mean Median Third Quartile.
18 10 0.2418 0.3196 0.2935 0.3656

S.1.3. ADNI data

Continuing from Section 5.1 in the main manuscript, we illustrate the network structure of the fitted

Pearson correlation connectivity (PCC) matrices for CN and MCI subjects. The PCC matrices serve

as responses residing in the space of correlation matrices equipped with the power Euclidean metric

with power α “ 1{2, coupled with baseline covariates taken as age and C-score over a time window

r0, 1s, since the first available scan.

First, the effect of the C-score for a fixed age is demonstrated for MCI subjects through correla-

tion plots of the estimated PCC matrices. We fixed the age of the subjects at their mean level and

fitted the model at varying levels of the C-score, namely, at the 10%, 50%, and 90% quantiles of the
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Figure 13: Effect of the predictor Fertility Rate, evaluated at points on the fitted geodesic. The
left, middle, and right panels show the fits for the years 1995, 2000, and 2008 respectively, where
the remaining life densities are fitted at the 10% (red), 50% (blue) and 90% (green) quantile levels
of Fertility rate, while the other predictors are fixed at their mean levels.

C-score. Figure 17 demonstrates the trend for the temporal correlations for varying predictor levels

at different times of the study. The top and bottom rows correspond to the predicted correlation

matrices (with the diagonals set to 0) at times 0 and 1 respectively, while within each row the left,

middle, and right panels depict the fits at the 10%, 50%, and 90% quantiles of the C-score with the

age fixed at its mean level. The overall correlation strengths decrease as C-scores increase, reflecting

the mean effects of the baseline covariates. Further, comparing the rows for each panel, we find

overall weaker correlations at time 1 compared with those at time 0.

We also converted the predicted PCC matrices into networks to better interpret and visualize

the brain structure. The predicted PCC matrices at varying levels of C-scores and for a fixed age

were converted into weighted adjacency matrices and we explored the community detection methods

for these network representations for both the CN and MCI subjects. The predicted networks for

the CN and MCI subjects are demonstrated in Figure 18 and 19 respectively, where the nodes

were placed using the Fruchterman-Reingold layout algorithm (Fruchterman and Reingold, 1991)
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Figure 14: Effect of the predictor Percentage of Population Growth, evaluated at points on the
fitted geodesic. The left, middle, and right panels show the fits for the years 1995, 2000, and 2008
respectively, where the remaining life densities are fitted at the 10% (red), 50% (blue) and 90%
(green) quantile levels of Population Growth, while the other predictors are fixed at their mean
levels.

for visualization. Spectral clustering (Newman, 2006a) is applied to detect the community structure

in each network, where different communities are distinguished by different colors. The R package

igraph was used to find communities in graphs via directly optimizing a modularity score with a

fast greedy algorithm.

The number of communities for the CN subjects at the 10%, 50%, and 90% quantiles of the

C-score, where the other covariate age is fixed at its mean level, are 7, 6, 7 corresponding to the

fits at time 0, respectively, and 13, 12, 11, corresponding to the fits at time 1, respectively. The

number of communities found in the predicted networks for MCI subjects are 7, 3, 7 and 11, 4, 11,

respectively, at time 0 and time 1. The communities with no less than 10 nodes are highlighted

using colored polygons. These communities are found to be associated with different anatomical

regions of the brain, where a community is identified as the anatomical region to which the majority

of nodes belong. However, the communities found using the spectral clustering method overlap,

especially for a higher value of the C-score, as the local interconnectivity and tendency to form a
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Figure 15: Figure showing the effect of the baseline predictor- Unemployment rate, evaluated at
points on the geodesic. The left, middle, and right panels show the fits for the years 1995, 2000, and
2008 respectively, where the remaining life densities are fitted at the 10%, 50%, and 90% quantile
levels of the Unemployment rate (shown in red, blue, and green curves, respectively), while the
other predictors are fixed at their mean levels.

clique more locally increases. High cliquishness is known to be associated with reduced capability

to rapidly combine specialized information from distributed brain regions, which may contribute to

the cognitive decline of Alzheimer’s subjects.

Finally, the global efficiency, a characteristic measure of network integration for the estimated

networks evaluated at all points between time 0 and 1, on the underlying geodesic in the space of

SPD matrices, for the CN and MCI subjects is demonstrated in Figure 20. Global efficiency is a

scaled measure of how many steps it takes when moving through the network from one node to

another, where higher efficiency means that on average fewer steps are needed (Alexander-Bloch

et al., 2013; Latora and Marchiori, 2001). In the left and right panels of Figure 20, the time-

varying nature of the global efficiency of the estimated networks are illustrated for the CN and MCI

subjects respectively. Each panel shows an overall decreasing trend with time. Further, for each

panel, the estimated networks at the 10%, 50%, and 90% quantiles of the C-score are shown in red,

blue, and purple, where the other covariate age is kept fixed at its mean level. The purple line is
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Figure 16: Figure displaying the observed and estimated remaining life distributions, represented
as densities for a select few countries over a few selected calendar years. The panels, clockwise from
top-left, correspond to the countries- Australia, Finland, France, United States, Netherlands, and
Japan. In each panel, the red, blue, and green lines show the densities at the calendar years 1995,
2000, and 2008, respectively. The observed and predicted densities are shown in solid and dashed
lines, respectively, the estimated densities being computed at the observed covariate values.

generally below the others, which suggests that higher C-scores are associated with lower degrees of

global efficiency, indicating less connectivity in the brain and a enhanced cognitive deficiency. The

impairment over time looks more severe for the MCI subjects.
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Figure 17: Correlation plot of the predicted PCC matrices over varying levels of covariates at two
different time points for MCI subjects. The top and bottom rows correspond to the predicted
correlation matrices at times 0 and 1 respectively, while within each row the left, middle, and right
panels depict the fits at the 10%, 50%, and 90% quantiles of the C-score with the other covariate
age fixed at its mean level. Positive (negative) values for correlations are drawn in red (blue).
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(a) At time t “ 0; 10%
quantile of the C-score,
No. of communities = 7.
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(b) At time t “ 0; 50%
quantile of the C-score,
No. of communities = 6.
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(c) At time t “ 0; 90%
quantile of the C-score,
No. of communities = 7.
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(d) At time t “ 1; 10%
quantile of the C-score,
No. of communities = 13.
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(e) At time t “ 1; 50%
quantile of the C-score,
No. of communities = 12.
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(f) At time t “ 1; 90%
quantile of the C-score,
No. of communities = 11.

Frontal Temporal Occipital Parietal Subcortical Limbic

Figure 18: Representation of the estimated PCC matrices at different levels of C-score as brain
network, using spectral community detection method for the CN subjects. The top and bottom
rows correspond to the predicted correlation matrices at times 0 and 1 respectively, while within
each row the left, middle, and right panels depict the fits at the 10%, 50%, and 90% quantiles of
the C-score with the other covariate age fixed at its mean level. The communities comprising 10 or
more ROIs are highlighted using colored polygons. These communities are found to be associated
with different anatomical regions of the brain.
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(a) At time t “ 0; 10%
quantile of the C-score,
No. of communities = 7.
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(b) At time t “ 0; 50%
quantile of the C-score,
No. of communities = 3.

PRE

POST

RO

F1

F2

F3OP

F3T

F1M

SMA

PCL

F1O

F1MO

F2O

F3O

GR

OC

T1

HES

T2

T3

P1 P2

AGSMG

PQ

O1

O2

O3

Q

V1

LING

FUSI

T1P

T2P

ACIN

MCIN

PCIN

HIP

PHIP

INS

AMYG

CAU

PUT
PAL

THALPRE

POST

RO

F1

F2F3OP

F3T
F1M

SMA

PCL

F1O

F1MO

F2O

F3O

GR

OC

T1

HES

T2

T3

P1

P2

AG

SMG

PQ

O1

O2

O3

Q

V1

LING

FUSI

T1P

T2P

ACIN

MCIN

PCIN

HIP

PHIP

INS

AMYG

CAU

PUT

PAL

THAL

(c) At time t “ 0; 90%
quantile of the C-score,
No. of communities = 7.
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(d) At time t “ 1; 10%
quantile of the C-score,
No. of communities = 11.
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(e) At time t “ 1; 50%
quantile of the C-score,
No. of communities = 4.
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(f) At time t “ 1; 90%
quantile of the C-score,
No. of communities = 11.

Frontal Temporal Occipital Parietal Subcortical Limbic

Figure 19: Representation of the estimated PCC matrices at different levels of C-score as brain
network, using spectral community detection method for the MCI subjects. The top and bottom
rows correspond to the predicted correlation matrices at times 0 and 1 respectively, while within
each row the left, middle, and right panels depict the fits at the 10%, 50%, and 90% quantiles of
the C-score with the other covariate age fixed at its mean level. The communities comprising 10 or
more ROIs are highlighted using colored polygons. These communities are found to be associated
with different anatomical regions of the brain.
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Figure 20: Figure showing the global efficiency of the estimated brain network over time for the
CN and MCI subjects (in the left and right panels, respectively). The covariate levels at which
the networks are estimated are depicted in red, blue, and purple, respectively, corresponding to the
10%, 50%, and 90% quantiles of the C-score, with the other covariate age fixed at its mean level.
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