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ABSTRACT

Single index models provide an effective dimension reduction tool in regression, especially for
high dimensional data, by projecting a general multivariate predictor onto a direction vec-
tor. We propose a novel single-index model for regression models where metric space-valued
random object responses are coupled with multivariate Euclidean predictors. The responses
in this regression model include complex, non-Euclidean data, including covariance matrices,
graph Laplacians of networks, and univariate probability distribution functions, among other
complex objects that lie in abstract metric spaces. While Fréchet regression has proved use-
ful for modeling the conditional mean of such random objects given multivariate Euclidean
vectors, it does not provide for regression parameters such as slopes or intercepts, since the
metric space-valued responses are not amenable to linear operations. As a consequence, dis-
tributional results for Fréchet regression have been elusive. We show here that for the case of
multivariate Euclidean predictors, the parameters that define a single index and projection
vector can be used to substitute for the inherent absence of parameters in Fréchet regression.
Specifically, we derive the asymptotic distribution of suitable estimates of these parameters,
which then can be utilized to test linear hypotheses for the parameters, subject to an iden-
tifiability condition. Consistent estimation of the link function of the single index Fréchet
regression model is obtained through local linear Fréchet regression. We demonstrate the
finite sample performance of estimation and inference for the proposed single index Fréchet
regression model through simulation studies, including the special cases where responses
are probability distributions and graph adjacency matrices. The method is illustrated for
resting-state functional Magnetic Resonance Imaging (fMRI) data from the ADNI study.

KEY WORDS: Single index, Dimension reduction, Random objects, Non-Euclidean data,
Local Fréchet regression, M-estimation, FMRI.
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2 1 INTRODUCTION

1 Introduction

Modeling the regression relationship between a real-valued response Y and a multivariate
Euclidean predictor vector X corresponds to specifying the form of the conditional means
mpxq “ EpY |X “ xq. Higher dimensionality of X can be problematic when one is interested
to go beyond the standard multiple linear models and aims for a nonparametric estimation of
mpxq. This provides strong motivation to consider regression models that provide dimension
reduction. Single index models are one of the most popular approaches to achieve this under
the assumption that the influence of the predictors on the response can be collapsed to a
single index, i.e., a projection on a specific direction, complemented by a nonparametric link
function. This reduces the predictors to a univariate index while still capturing relevant fea-
tures and since the nonparametric link function acts only on a one-dimensional index, these
models are not subject to the curse of dimensionality. The single index model generalizes
linear regression, where the link function is the identity. For a real-valued response, Y and
a p-dimensional predictor X, the semiparametric single index regression model is given by

EpY |X “ xq “ EpY |XJθ̄0 “ tq “ mpt, θ̄0q. (1)

In model (1), the dependence between Y and X, characterized by the conditional mean, is
summarized by the parameter vector θ̄0 and the link function m.

The function m is nonparametric and thus includes location and level changes, and
therefore the vector X cannot include a constant that would serve as an intercept. For
identifiability reasons, θ̄0 is often assumed to be a unit vector with a positive first coordinate.
A second approach is to require one component to equal one. This presupposes that the
component that is set to equal 1 indeed has a non-zero coefficient (Lin and Kulasekera,
2007; Cui et al., 2011). Model (1) is only meaningful if the Euclidean predictor vector X
is of dimension 2 or larger. If X is one-dimensional, the corresponding special case of the
model is the one-dimensional nonparametric regression EpY |X “ xq “ mpxq, which does not
feature any parametric component.

The classical single index regression model with Euclidean responses has attracted atten-
tion from the scientific community for a long time due to its flexibility and the interpretability
of the (linear) coefficients and flexibility, owing to the nonparametric link function, as well
as due to its wide applicability in many scientific fields. The coefficient θ̄0 that defines the
single index xJθ̄0 along with the shape of the nonparametric component m characterizes
the relationship between the response and the predictor. The parametric component θ̄0 is
of primary interest for inference in this model. The problem of recovering the true direction
θ̄0 can be viewed as a subclass of sufficient dimension reduction (SDR) techniques, where
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identifying the central subspace of X that explains most of the variation in Y has been a
prime target (Li and Duan, 1989; Cook, 1994; Li and Wang, 2007).

In addition to sufficient dimension reduction techniques, various related approaches to
estimate θ̄0 in (1) have been studied. These include projection pursuit regression (PPR)
(Friedman and Stuetzle, 1981; Hall, 1989), average derivatives (Härdle and Stoker, 1989;
Stoker, 1986), sliced inverse regression (SIR) (Li, 1991), conditional minimum average vari-
ance estimation (MAVE) (Xia et al., 2009) and various other methods (Xia and Härdle,
2006; Xia, 2007). These approaches have focused on the nonparametric estimation of the
link function to recover the index parameter in (1) (Härdle et al., 1993; Huh and Park, 2002;
Hristache et al., 2001), partially linear versions (Carroll et al., 1997; Yu and Ruppert, 2002)
and various noise models (Chang et al., 2010; Wang et al., 2010). Inference for the index
parameters has also been well studied (Fan and Huang, 2005; Liang et al., 2010; Gao and
Liang, 1997) for the classical single index model.

Various extensions of single index regression have been considered more recently (Zhao
et al., 2020; Kereta et al., 2020), including models with multiple indices or high-dimensional
predictors (Zhu and Zhu, 2009; Zhou and He, 2008; Kuchibhotla and Patra, 2020), censored
data (Lopez et al., 2013), and longitudinal and functional data as predictors (Jiang and
Wang, 2011; Chen et al., 2011; Ferraty et al., 2011; Novo et al., 2019). However, none of
these extensions has covered situations where responses are not in a Euclidean vector space,
even though this case is increasingly important for data analysis. Two very recent excep-
tions are Ying and Yu (2020) and Zhang et al. (2021), who considered extending sufficient
dimension reduction approaches for the case of random objects. The overall lack of available
methodology for single-index models with random object responses motivates our approach.
Non-Euclidean complex data structures arising in areas such as biological or social sciences
are becoming increasingly common, due to technological advances that have made it possible
to record and efficiently store sensor data and images (Peyré, 2009), shapes (Small, 2012) or
networks (Tsochantaridis et al., 2004). For example, one might be interested in functional
connectivity, quantified in the form of correlation matrices obtained from neuroimaging stud-
ies, to study the effect of predictors on brain connectivity, an application that we explore in
Section 5.1.

Other examples of general metric space objects include probability distributions (Delicado
and Vieu, 2017), such as age-at-death distributions as observed in demography or network
objects, such as internet traffic networks. Such “object-oriented data” (Marron and Alonso,
2014) or “random objects” (Müller, 2016) can be viewed as random variables taking values in
a separable metric space that is devoid of a vector space structure and where only pairwise
distances between the observed data are available. Almost all existing methodology for
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single-index models as briefly reviewed above assumes that one has Euclidean responses,
and these methods rely in a fundamental way on the vector space structure of the space
where the responses reside. When there is no linear structure, a new methodology is needed
and this paper contributes to this development.

A natural measure of location for random elements of a metric space is the Fréchet mean
(Fréchet, 1948), which is a direct generalization of the standard mean and is defined as the
element of the metric space for which the expected squared distance to all other elements,
known as the Fréchet function, is minimized. Depending on the space and metric, Fréchet
means may or may not exist as unique minimizers of the Fréchet function. Fréchet regression
is an extension of Fréchet means to the notion of conditional Fréchet means, and local as
well as global versions have been recently studied in several papers (Petersen and Müller,
2019; Petersen et al., 2019; Schötz, 2019, 2020; Bhattacharjee and Müller, 2022).

Global Fréchet regression is a generalization of linear regression for random object re-
sponses. In analogy to classical linear regression, it features a restrictive structural model
assumption. While the local linear version of Fréchet regression is more flexible, it suffers
from the curse of dimensionality as the dimension of the predictors increases. Further, nei-
ther version of the Fréchet regression incorporates an interpretable inference regime. In this
paper, we introduce (single) Index Fréchet Regression (IFR) to facilitate inference in the
context of Fréchet regression when the response variable is a random object lying in gen-
eral metric space and the predictor is a p-dimensional Euclidean vector X with p ě 1. Our
goal is to develop an extension of the conventional estimation and inference paradigm for
single-index models for this challenging case. It is assumed that the conditional expectation
(Fréchet regression) of Y depends on the predictor vector X only through the projection or
index XJθ̄0 for a parameter vector θ̄0 P Θ̄ P Rp. Since there is no notion of direction or sign
in a general metric space, we interpret the index parameter in the proposed index Fréchet
regression model (IFR) as the direction in the predictor space along which the variability of
the response is maximized. The semiparametric framework provided by the proposed single
index model facilitates stable estimation and interpretable inference.

It turns out to be useful to cast the direction estimation problem in the framework of M-
estimation for an appropriate objective function and to use empirical process theory to show
consistency of the proposed estimate. We derive an asymptotic normality result for these
estimators under mild assumptions on the metric space and the unknown link function by
utilizing an appropriate version of recent results of Chen and Müller (2022) concerning local
linear Fréchet regression estimators. Under suitable regularity assumptions, the asymptotic
distribution of the estimated index parameter can then be harnessed to construct a Wald-type
statistic to conduct inference. Combining this with an auxiliary result on the asymptotic
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convergence of the estimated covariance matrix makes it possible to employ a bootstrap
method to obtain inference in finite sample situations.

When we finalized this work, we became aware that independently and simultaneously
another group also developed an approach for single index Fréchet regression (Ghosal et al.,
2021). We wish to emphasize that this paper was not in any way influenced by this parallel
development (with preprints becoming available within days of each other).

The paper is organized as follows: The basic setup is defined in Section 2 and the theory
on the asymptotic behavior of the index parameter is provided in Section 3, with a focus
on results for inference. The index vector is assumed to lie on a hyper-sphere, with a
non-negative first element to facilitate identifiability. Then it is natural to quantify the
performance of the proposed estimators by the geodesic distances between the estimated
and true directions. The results of simulation studies with various types of random objects
as responses are reported in Section 4 with additional results in the Supplement. In Section 5
we apply the methods to infer and analyze the effect of age, sex, total Alzheimer’s brain score
and the stage of Alzheimer’s Disease on the brain connectivity of patients with dementia.
Brain connectivity is derived from fMRI signals of brain regions of interest (Thomas Yeo
et al., 2011) and quantified in the form of correlation matrix objects. We present additional
illustrations for human mortality data as distributional objects and mood data of unemployed
workers as compositional objects, with details in the Supplement. A brief discussion follows
in Section 6.

2 Model and Estimation Methods

In all of the following, pΩ, d, P q is a totally bounded metric space with metric d and a
probability measure P. The random objects Y take values in Ω. This is coupled with a
p-dimensional real-valued predictor X. Throughout we will use bold letters to denote mul-
tivariate real vectors. The conditional Fréchet mean of Y given X is a generalization of
EpY |X “ xq to metric spaces, defined as the argmin of Epd2pY, ωq|X “ xq, ω P Ω (Petersen
and Müller, 2019), i.e.,

E‘pY |X “ xq :“ argmin
ω P Ω

Epd2pY, ωq|X “ xq. (2)

Evaluated at the minimizer, the objective function in (2) is the corresponding generalized
measure of dispersion around the conditional Fréchet mean and can be viewed as a conditional
Fréchet function.

As discussed earlier, obtaining inference for Fréchet regression is an elusive goal, for
both the more restrictive global as well as the more flexible but the curse of dimensionality
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afflicted local version of Fréchet regression. To move towards inference, we propose here a
more structured model, inspired by its Euclidean single index equivalent in (1), given by

E‘pY |X “ xq “ m‘pxJθ̄0, θ̄0q, (3)

where θ̄0 is the true direction parameter of interest. Model (1) emerges as a special case
of model (3) for a Euclidean response, as the conditional Fréchet mean coincides with the
conditional expectation EpY |Xq for the choice of the absolute Euclidean distance metric for
the case Ω “ R. In other words, the conditional Fréchet mean is assumed to be a function
of θ̄0 in such a way that the distribution of Y only depends on X only through the index
XJθ̄0, that is, Y K E‘pY |Xq|pXJθ̄0q. Thus

E‘pY |X “ xq “ E‘pY |XJθ̄0 “ tq “ m‘pt, θ̄0q,

and invoking local linear nonparametric Fréchet regression for the one-dimensional index
promises to overcome the curse of dimensionality problem. For projections XJθ̄0 P Tθ̄0 Ă R,
which depend on θ̄0, we consider predictors X with bounded norm such that Tθ̄0 Ă T ,
where T is a compact interval on R. We note that the link function, for given θ̄0 P Θ̄, m‘ :

Tθ̄0 ÞÑ pΩ, dq in the true model depends on the multivariate predictor X “ x only through
the single-index t “ xJθ̄0, as well as on the direction vector θ̄0 implicitly. Thus, explicitly
characterizing this dependence, we define the Index Fréchet Regression (IFR) model for
random object response Y and Euclidean predictor X as

m‘pt, θ̄0q :“ argmin
ω P Ω

Epd2pY, ωq|XJθ̄0 “ tq. (4)

The coefficient θ̄0 P Rp is the quantity of interest for the single index Fréchet model owing
to its interpretability by quantifying the contribution of each predictor component. More
generally, the quantity in model (4) can be evaluated for any direction vector θ̄ P Θ̄ by

m‘pxJθ̄, θ̄q “ argmin
ω P Ω

Epd2pY, ωq|XJθ “ xJθ̄q. (5)

In the Euclidean case, identifiability conditions for the direction parameter have been
widely discussed in the literature (Carroll et al., 1997; Lin and Kulasekera, 2007; Cui et al.,
2011; Zhu and Xue, 2006). We assume the parameter space Θ̄ to be constrained in order to
ensure that θ̄ in the representation (5) is uniquely defined, where

Θ̄ :“ tθ̄ “ pθ1, . . . , θpq
J : }θ̄} “ 1, θ1 ą 0, θ̄ P Rp

u. (6)
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We first choose an identifiable parametrization that transforms the boundary of a unit
ball in Rp to the interior of a unit ball in Rpp´1q. By eliminating θ1, the parameter space Θ̄

can be rearranged to tpp1 ´
řp

r“2 θ
2
rq1{2, θ2, . . . , θpqJ :

řp
r“2 θ

2
r ă 1u. This re-parametrization

is the key to analyzing the asymptotic properties of the estimates for θ and also facilitating
efficient computation. The true parameter is then partitioned into θ̄ “ pθ1,θqJ, where
θ “ pθ2, . . . , θpqJ. We estimate the pp ´ 1q´ dimensional vector θ in the single-index model
and then use θ1 “ p1 ´

řp
r“2 θ

2
rq1{2 to obtain θ̂1.

Proposition 1 (Identifiability of model (4)). Suppose h‘pxq “ E‘pY |X “ xq, that the sup-
port S of h‘p¨q is a convex bounded set with at least one interior point and that h‘p¨q is a
non-constant continuous function on S. If

h‘pxq “ g1‘pαJx,αq “ g2‘pβJx,βq, for all x P S,

for some continuous object-valued link functions g1‘ and g2‘, and some α,β P Θ̄, where Θ̄

is as described in (6). Then α “ β and g1‘ ” g2‘ on tαJx|x P Su.

The above result can be proved using a similar argument as given in the proof of Theorem
1 of Lin and Kulasekera (2007).

Scrutinizing the special case of a Euclidean response Y in model (1), the variation in Y

is seen to result from the variation in XJθ̄0 as well as from the variation in the error term
in the model, denoted by ε (Ichimura, 1993). On the contour line XJθ̄0 “ c, the variability
in Y only results from the variability in ε. Along contour lines XJθ̄ “ c for θ̄ ‰ θ̄0, XJθ̄0 is
not constant and therefore the variability in Y along the contour lines XJθ̄ “ c, θ̄ ‰ θ̄0 is
due to both the variation in XJθ̄0 and in ε. Since Var

`

Y |XJθ̄ “ c
˘

measures the variability
in Y on a contour line XJθ̄ “ c, θ̄ ‰ θ̄0, one can characterize θ̄0 as the minimizer of the
objective function Hpθ̄q, where Hpθ̄q :“ EpVarpY |XJθ̄qq and θ̄0 “ argminθ̄PΘ̄Hpθ̄q. The
constraint θ̄Jθ̄ “ 1, with the first element of the index θ1 ą 0, ensures the identifiability of
the objective function. Defining an equivalence class of the parameter vector Θ̄θ̄0 :“ tθ̄ P

Θ̄ : mpxJθ̄q “ mpxJθ̄0q a.e. in x for some mu for θ̄ R Θ̄θ̄0 , one has Hpθ̄0q ă Hpθ̄q.

To recover the true direction of the single index from model (4), the conditional variance of
Y given X “ x for a real-valued response can be replaced by the conditional Fréchet variance
d2pY,m‘pxJθ̄, θ̄qq for any given unit orientation vector θ̄. Thus, for a general object response
Y P pΩ, dq, θ̄0 can alternatively be expressed as

θ̄0 “argmin
θ̄ P Θ̄

Hpθ̄q, where Hpθ̄q “ E
`

d2
`

Y,m‘pXJθ̄, θ̄q
˘˘

,

m‘pt, θ̄q “ argmin
ωPΩ

Mpω, t, θ̄q, with Mpω, t, θ̄q :“ E
`

d2pY, ωq|XJθ̄ “ t
˘

.
(7)
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This corresponds to finding the true parameter through the optimal direction that maxi-
mizes the total variability of the responses, an idea developed in Ichimura (1993) for the
case of Euclidean responses. Instead of choosing the parameter minimizing the expected
variance explained by the single index XJθ, for object responses the new goal is to choose
the parameter minimizing the expected Fréchet variance.

To recover θ̄0 from the representation (7), one needs to also estimate the conditional
Fréchet mean, as in the IFR model (4), for which we employ the local linear Fréchet regression
estimate (Petersen and Müller, 2019). The idea is as specified below. We approximate the
conditional Fréchet mean m‘ in (7) by a locally weighted Fréchet mean that we refer to as
intermediate weighted Fréchet mean. The weights for this intermediate Fréchet mean are
derived from a weight function Sp¨, ¨, ¨q that characterizes the effect on the predictors via a
chosen kernel function Kp¨q and a bandwidth parameter b such that Kbp¨q “ p1{bqKp¨{bq.

For any given unit direction index θ̄, this intermediate localized weighted Fréchet mean is

m̃‘pt, θ̄q “ argmin
ωPΩ

L̃bpω, t, θ̄q, with L̃bpω, t, θ̄q :“ E
`

SpXJθ̄, t, bqd2pY, ωq
˘

, (8)

where

SpXJθ̄, t, bq “
1

σ2
0pt, θ̄q

KbpXJθ̄ ´ tqrµ2pt, θ̄q ´ µ1pt, θ̄qpXJθ̄ ´ tqs,

µlpt, θ̄q “ EpKbpXJθ̄ ´ tq pXJθ̄ ´ tqlq, l “ 0, 1, 2, σ2
0pt, θ̄q “ µ2pt, θ̄qµ0pt, θ̄q ´ µ2

1pt, θ̄q,

(9)
and Mp¨, t, θ̄q “ L̃bp¨, t, θ̄q ` Opbq for all t and θ̄; note that m̃‘pt, θ̄q is a non-random popu-
lation quantity.

Suppose we observe a random sample of paired observations pXi, Yiq, i “ 1, . . . , n, where
Xi is a p´dimensional Euclidean predictor and Yi is an object response situated in a metric
space pΩ, dq. Using the form of the intermediate target in (8) and replacing the auxiliary
parameters by their corresponding empirical estimates, the local Fréchet regression estimator
at a given value t of the single index for a given direction parameter θ̄ P Θ̄ is defined as

m̂‘pt, θ̄q “ argmin
ω P Ω

L̂npω, t, θ̄q, with L̂npω, t, θ̄q :“
1

n

n
ÿ

i“1

pSpXJ
i θ̄, t, bqd2pYi, ωq, (10)
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where

pSpXJ
i θ̄, t, bq “

1

σ̂2
0pt, θ̄q

KbpXJ
i θ̄ ´ tqrµ̂2pt, θ̄q ´ µ̂1pt, θ̄qpXJ

i θ̄ ´ tqs,

µ̂lpt, θ̄q “
1

n

n
ÿ

j“1

KbpXJ
i θ̄ ´ tq pXJ

i θ̄ ´ tql, l “ 0, 1, 2, σ̂2
0pt, θ̄q “ µ̂2pt, θ̄qµ̂0pt, θ̄q ´ µ̂2

1pt, θ̄q.

(11)
The following assumption pertains to the existence and uniqueness of the Fréchet means

in (7) and (10).

(A0) The conditional and weighted Fréchet means in (7), (8), and (10) are well defined, i.e.,
they exist and are unique, the latter one almost surely. Further, for all θ̄ P Θ̄ such
that θ̄ ‰ θ̄0, P pX P Rp : m‘pXJθ̄, θ̄q ‰ m‘pXJθ̄0, θ̄0qq ą 0.

Existence and uniqueness of Fréchet means depend on the nature of the metric space
and the underlying probability measure and will be discussed further after (A4) in section
3. For example, in the case of Euclidean responses, Fréchet means coincide with the usual
means for random vectors with finite second moments. In the case of Riemannian manifolds,
the existence, uniqueness, and convexity of the center of mass are guaranteed under certain
conditions (Afsari, 2011; Pennec, 2018). In a space with a negative or zero curvature, or
in a Hadamard space unique Fréchet means always exist (Bhattacharya and Patrangenaru,
2003, 2005; Patrangenaru and Ellingson, 2015; Kloeckner, 2010). The existence of unique
Fréchet means in assumption (A0) is satisfied for the space pΩ, dW q of univariate probability
distributions with the 2-Wasserstein metric and also for the space pΩ, dF q of covariance
matrices with the Frobenius metric dF (Petersen and Müller, 2019).

Assume that for all unit direction vectors θ̄ the support Tθ̄ of T :“ XJθ̄ is compact, where
all Tθ̄ are subsets of a fixed interval. For the derivation of distributional limit results, one
needs to establish sufficiently fast convergence of the estimated means. This challenge can be
overcome by partitioning the interval where the linear predictor is situated. Specifically, we
partition Tθ̄ into M equal-width non-overlapping bins tB1, B2, . . . , BMu, where data falling
in different bins are independent and identically distributed. We denote by X̃l and Ỹl the
representative data points in the l´th bin, l “ 1, . . . ,M. The number of bins M depends
on the sample size n, where the choice of the sequence M “ Mpnq is discussed in (A4) in
section 3 below. The proposed estimator for the true direction θ̄0 in (7) is then given by

p

sθ “ argmin
θ̄ P Θ̄

Vnpθ̄q, where Vnpθ̄q “
1

M

M
ÿ

l“1

d2
´

Ỹl, m̂‘pX̃
J

l θ̄, θ̄q

¯

. (12)

Here m̂‘pX̃
J

l θ̄, θ̄q, l “ 1, . . . ,M, is the local linear Fréchet regression estimator, constructed
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based on the sample pXi, Yiq, i “ 1, . . . , n, and evaluated at each sample point of the binned
sample pX̃l, Ỹlq, l “ 1, . . . ,M, as described in (10) and (11). We also require an intermediate
quantity that corresponds to the empirical version of Hp¨q in (7), defined as

s̃θ “ argmin
θ̄ P Θ̄

Ṽnpθ̄q, where Ṽnpθ̄q “
1

M

M
ÿ

l“1

d2
´

Ỹl,m‘pX̃
J

l θ̄, θ̄q

¯

. (13)

The bandwidth b “ bpnq is a tuning parameter and features in the rate of convergence of
m̂‘ to m‘. We note that another possible estimator for m‘ could be obtained by applying
global Fréchet regression. This alternative estimator for the unknown link function in the
IFR model (4) does not depend on a tuning parameter as is needed for locally linear Fréchet
regression but is considerably less flexible.

3 Theory

The unknown quantities that constitute the Index Fréchet Regression (IFR) model consist of
the nonparametric link function and the index parameter, and thus the asymptotic properties
of the estimate of the true unit direction rely on those of the estimates of the link function
(based on local linear Fréchet regression) and the index parameter (through an M-estimator
of the criterion function H in (7)). The metric space pΩ, dq is assumed to be totally bounded
with diameter D, hence separable. In order to obtain the right bound on the metric entropy of
the space Ω, the boundedness assumption is crucial. While boundedness imposes a restriction
that is not needed in the Euclidean case, it is a quite feasible assumption in general metric
spaces, since, for commonly observed non-Euclidean objects, the underlying metric space
satisfies the total boundedness property. Examples include the Wasserstein-2 space of one-
dimensional distributions with compact support and the space of spheres with the geodesic
metric and positive semi-definite matrices with Frobenius or power metric.

We make the following assumption on the objective function Hp¨q in (7).

(A1) There exist η ą 0 and C ą 0 such that whenever }θ̄ ´ θ̄0} ă η for θ̄ P Θ̄, we have
Hpθ̄q ´ Hpθ̄0q ě C}θ̄ ´ θ̄0}2.

The above condition on the curvature of the objective function H is standard in the empirical
process theory literature and controls the behavior of Ṽn ´ H near the minimum in order to
obtain rates of convergence. In addition, with regard to the quantities in (7), (10), and (12)
we require the following assumptions.

(A2) The link function m‘ is Lipschitz continuous, that is, there exists a real constant L ě 0
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such that, for all x with a bounded norm, and for all θ̄1, θ̄2 P Θ̄,

d
`

m‘pxJθ̄1, θ̄1q,m‘pxJθ̄2, θ̄2q
˘

ď L}θ̄1 ´ θ̄2}.

(A3) For any given direction θ̄, the univariate index variable T :“ XJθ̄ is assumed to have
a density fT,θ̄p¨q with a compact support Tθ̄ Ă T for some bounded T Ă R. We denote
the space of predictors for which this holds by X Ă Rp.

(A4) For β1, β2 ą 1 that satisfy assumption (U3) in the Supplement and any ε ą 0, let

an “ maxtb2{pβ1´1q, pnb2q´1{p2pβ2´1q`εq, pnb2p´ log bq´1
q
1{p2pβ2´1qq

u. (14)

The number of non-overlapping bins M “ Mpnq, as defined in Section 2, is such that
M “ Mpnq Ñ 8 and Man Ñ 0 as n Ñ 8.

We note that for β1 “ β2 “ 2, which is the most common situation, an reduces to

an “ maxtb2, pnb2q´1{p2`εq, pnb2p´ log bq´1
q
1{2

u.

Assumption (A2) is a strong form of uniform continuity for the link function. Intuitively,
it limits how fast the object m‘ can change, introducing a concept of smoothness in the
link function for the IFR model (4). Lipschitz continuity is a natural choice of morphisms
between metric spaces. This assumption is slightly stronger than the assumption of a strictly
monotone link function that is commonly used in classical single index literature to ensure
identifiability. Since the domain of the link function is compact, in the Euclidean response
case, our assumption would translate to having a strictly monotone continuous link func-
tion with a bounded derivative. Essentially, assumption (A2) is weaker than a derivative
condition and stronger than assuming only the strict monotonicity of the link function. As-
sumption (A3) is basic. The predictors needed for the nonparametric Fréchet regression are
required to be randomly distributed over the domain where the function is to be estimated,
and on average, to become denser as more data are collected. Sufficient for this to be sat-
isfied is that there is at least one continuous predictor and the predictors X are bounded.
Assumption (A4) is required for the rate of convergence and limit distribution results, for
which we involve the binning device, and it connects the uniform rate of convergence an for
the local linear Fréchet regression estimator as given in (14) with the number of bins M .

For most types of random objects, such as those in the Wasserstein-2 space (the space of
probability distributions equipped with the 2-Wasserstein distance) or the space of symmetric
positive semidefinite matrices endowed with the Frobenius or power metric, one has β1 “
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β2 “ 2 in the definition of an in assumption (A4) (see assumptions (U1)-(U3) in Section S.2.
of the Supplement). If one chooses the bandwidth sequence b for the local linear Fréchet
regression such that, for a given ε ą 0, b „ n´pβ1´1q{p2β1`4β2´6`2εq, then an is of the order
n

´ 1
pβ1`2β2´3`εq (Chen and Müller, 2022). For β1 “ β2 “ 2, this becomes an „ n´ 1

3`ε . Any
sequence M “ Mpnq “ nγ with 0 ă γ ă 1

3
will then satisfy assumption (A4).

As an alternative characterization for the true direction parameter θ̄0, an important
property of the objective function Hp¨q in (7) is as follows.

Proposition 2. Under assumptions (A0) and (A2), Hp¨q in model (7) is a continuous
function of θ̄ P Θ̄, and θ̄0 “ argmin

θ̄ P Θ̄

Hpθ̄q.

Additional assumptions (U1)-(U3) and (R1)-(R2) have been used previously in Petersen
and Müller (2019) and Chen and Müller (2022), though in a slightly weaker form, and can
be found in Section S.2. of the Supplement. These are regarding They concern the existence,
uniqueness, and well separateness of the minimizers, the metric entropy condition in terms
of the covering number, and the curvature of the metric space near the minimizers and are
commonly used for the asymptotic analysis of M estimators utilizing empirical process theory
(Van der Vaart and Wellner, 2000), here specifically to establish consistency and uniform
rate of convergence for the local Fréchet regression estimator in (12), uniform across the
single-index values and the direction parameter. Uniformity over the single index value t

was already required in Chen and Müller (2022) to achieve uniform convergence of local linear
Fréchet regression. In the single index model framework, there is a new parameter vector θ̄,
the presence of which requires an additional uniformity requirement over θ̄. Assumptions
(R1)-(R2) are commonly used in the local regression literature (Silverman, 1978; Fan and
Gijbels, 1996).

We will make use of the following lemma, which is an appropriately modified version of
a known result (Theorem 1 of Chen and Müller (2022)), to deal with the link function when
investigating the asymptotic convergence rates of the proposed IFR estimator.

Lemma 1. Under assumptions (U1)-(U3), (R1)-(R2) (see Supplement) and if b Ñ 0, such
that nb2p´ log bq´1 Ñ 8 as n Ñ 8, for any ε ą 0,

sup
θ̄PΘ̄

sup
tPTθ̄

dpm̂‘pt, θ̄q,m‘pt, θ̄qq “ OP panq, (15)

where an is as given in equation (14) in assumption (A4).

It is worth mentioning here that the binning approach is not required for basic consistency
results without rates (Theorem 3.1 and Corollary 1). One can indeed re-define the criteria
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functions in (12) based on the whole sample pXi, Yiq i “ 1, . . . , n as

p

sθ “ argmin
θ̄ P Θ̄

Vnpθ̄q, where Vnpθ̄q “
1

n

n
ÿ

i“1

d2
`

Yi, m̂‘pXJ
i θ̄, θ̄q

˘

,

and carry on with the same proof techniques to show consistency of p

sθ to the true unit
direction vector θ̄0. However, to prove rates of convergence and investigate the asymptotic
behavior of the estimated parameter, we need to make use of the uniform convergence rate
an for local linear Fréchet regression, as given in Lemma 1. The binning step is necessary
to reduce the effective sample size from n to M “ Mpnq, the latter being intrinsically
tied by assumption (A4) to the uniform convergence rate an. The rate is effectively slower
than n´1{3, again by virtue of the uniform convergence rate an for the local linear Fréchet
regression estimator. One may alternatively consider global Fréchet regression to estimate
the unknown link function m‘, resulting in a near parametric rate of n´1{2. However, the
global Fréchet model may suffer from model-induced bias, since as a direct generalization of
linear regression, it may be overly restrictive for random object responses. For a consistent
unambiguous representation, we refer to the minimizers in (12) and (13) based on the binned
samples as our quantities of interest throughout the rest of the manuscript.

For all of the following results, the basic assumptions (A0)-(A3) are assumed to be
satisfied. We first demonstrate the consistency of the proposed estimator for the true index
direction. All proofs can be found in Section S.1. of the Supplement.

Theorem 3.1. Under the basic assumptions (A0)-(A3), and the technical assumptions (U1)-
(U3), and (R1)-(R2) listed in Section S.2. of the Supplement,

p

sθ ´ θ̄0
P

ÝÑ 0 on Θ̄,

where Θ̄ is as defined in (6).

Combining the consistency result for the direction vector in Theorem 3.1 with the uni-
form convergence of the local linear Fréchet regression estimator in Lemma 1 leads to the
asymptotic consistency of the estimated single index regression (IFR) model.

Corollary 1. Under the conditions required for Theorem 3.1, for any x P X Ă Rp,

d
´

m̂‘pxJp

sθ, p

sθq,m‘pxJθ̄0, θ̄0q

¯

“ oP p1q.

Since any θ̄ P Θ̄ can be decomposed into pθ1,θqJ, where θ1 ą 0 and }θ̄} “ 1 due to the
identifiability requirement, θ̄ is a function of θ. This makes it possible to write the criteria
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function and the corresponding minimizers in terms of the sub-vector θ only,

θ0 “ argmin
θ P Θ

Hpθq, θ̃ “ argmin
θ P Θ

Ṽnpθq, θ̂ “ argmin
θ P Θ

Vnpθq, where (16)

Θ :“ tθ : θ P Rp´1,J θJθ ă 1u. (17)

We note that θ0, θ̃, and θ̂ are the unconstrained minimizers for the criteria functions Hp¨q,

Ṽnp¨q, and Vnp¨q respectively, which are continuous functions of θ, the latter two almost
surely. Similarly the link function m‘pxJθ̄, θ̄q can be rewritten as m‘pxJrpθq, rpθqq, where
rpθq “ p1 ´

a

}θ}2,θqJ.
To study limit distributions, we impose an additional requirement on the interplay be-

tween the metric dp¨, ¨q in the metric space of responses and the true regression function m‘,
namely that the second order difference of the function d2p¨,m‘pz0qq is bounded away from
zero, for any z0 P T , where T Ă R denotes the domain of m‘. Specifically, for z0 “ zJrpθq,

for some z P Rp and θ P Θ, we denote m‘pzJrpθq, rpθqq “ m‘pz0,θq by m‘pz0q. We assume
(A5) For any z0 P T Ă R and u P Ω, there exists some κ ą 0, and a0 ą 0, such that for any

sufficiently small 0 ă a ă a0, and z0 ` 2a P T ,

1

a2
“

d2pu,m‘pz0 ` 2aqq ´ 2d2pu,m‘pz0 ` aqq ` d2pu,m‘pz0qq
‰

ě κ.

In the Euclidean case, assumption (A5) means that m‘ can be locally approximated by
straight lines and is satisfied for twice differentiable functions m‘, a common assumption
for classical single index modeling. Beyond the Euclidean special case, assumption (A5) can
be shown to be satisfied for fairly general metric spaces. An example for this are CAT(0)
spaces (see Burago et al. (2001)), where the regression function between two distinct points
m‘pz0q and m‘pz0 `aq, for some small a ą 0, can be approximated arbitrarily closely by the
geodesic path connecting them. Further details on this are provided in Appendix Appendix
A and Appendix B.

The geometric assumption (A5) is crucial to show that the intermediate objective function
Ṽnp¨q has non-negative curvature near its minimizer θ̃ with high probability. This is necessary
to bound the rate of the convergence of the discrepancy between the intermediate index
parameter θ̃ and the estimated version θ̂. We proceed to define partial derivatives of the
criteria functions with respect to the components of θ. For any x P Rp with bounded norm
and y P pΩ, dq, define the function fx,y : Rp´1 ÞÑ R such that

fx,ypθq “ fx,ypθ2, . . . , θpq “ d2
`

y,m‘pxJ
pθ1, . . . , θr, . . . , θs, . . . , θpqq

˘

, r, s “ 2, . . . , p. (18)
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The first and second ordered forward finite differences of fx,y are given as follows

▽apx, y, θrq “ fx,ypθ2, . . . , θr ` a, . . . , θpq ´ fx,ypθ2, . . . , θr, . . . , θpq,

▽2
apx, y, θr, θsq “ fx,ypθ2, . . . , θr ` a, . . . , θs ` a, . . . θpq ´ fx,ypθ2, . . . , θr ` a, . . . , θs, . . . , θpq

´ fx,ypθ2, . . . , θr, . . . , θs ` a, . . . , θpq ` fx,ypθ2, . . . , θr, . . . , θs, . . . , θpq.

(19)
Define

$

’

&

’

%

∆Hpθq :“
´

BHpθq

Bθ2
, . . . BHpθq

Bθp

¯J

, BHpθq

Bθr
:“ lim

εÑ0

1
ε
Ep▽εpX, Y, θrqq, r “ 2, . . . , p,

∆2Hpθq :“
´´

B2Hpθq

BθrBθs

¯¯

r,s“2,...,p
, B2Hpθq

BθrBθs
:“ lim

εÑ0

1
ε2
Ep▽2

εpX, Y, θr, θsqq, r, s “ 2, . . . , p.

We note that Hp¨q, Ṽnp¨q, and Vnp¨q are all real-valued functions with domain in a con-
strained subset of Rp. The appropriate limits for defining the partial derivatives can be shown
to exist under (A2) and the assumed total boundedness of the metric space Ω. The estimated
versions of the finite difference derivatives are, for r, s “ 2, . . . , p,

$

’

&

’

%

∆Vnpθq :“
´

BVnpθq

Bθ2
, . . . BVnpθq

Bθp

¯J

, BVnpθq

Bθr
:“ 1

hM

řM
l“1

p▽hpX̃l, Ỹl, θrq,

∆2Vnpθq :“
´´

B2Vnpθq

BθrBθs

¯¯

r,s“2,...,p
, B2Vnpθq

BθrBθs
“ 1

h2M

řM
l“1

x▽2
hpX̃l, Ỹl, θr, θsq,

p▽hpx, y, θrq “ f̂x,ypθ2, . . . , θr ` h, . . . , θpq ´ f̂x,ypθ2, . . . , θr, . . . , θpq,

x▽2
hpx, y, θr, θsq “ f̂x,ypθ2, . . . , θr ` h, . . . , θs ` h, . . . θpq ´ f̂x,ypθ2, . . . , θr ` h, . . . , θs, . . . , θpq

´ f̂x,ypθ2, . . . , θr, . . . , θs ` h, . . . , θpq ` f̂x,ypθ2, . . . , θr, . . . , θs, . . . , θpq,

(20)
with

f̂x,ypθq “ f̂x,ypθ2, . . . , θpq “ d2
`

y, m̂‘pxJ
pθ1, . . . , θr, . . . , θs, θpqq

˘

, r, s “ 2, . . . , p. (21)

Here h “ hpnq is a tuning parameter depending on n, for which we assume that

(A6) h “ hpnq Ñ 0 and Mh2pnq Ñ 8, as n Ñ 8.

Assumptions (A4) and (A6) together imply that furthermore an{h2 Ñ 0, as n Ñ 8.

Observe that the true and estimated index directions can be framed as M-estimators
of their respective criteria functions. This suggests utilizing empirical process-based ap-
proaches to obtain distributional convergence of θ̂, specifically to adopt a linearization ap-
proach (Van der Vaart and Wellner, 2000). Specifically, we show that

?
Mpθ̂ ´ θ̃q “ oP p1q

and
?
Mpθ̃ ´ θ0q

D
Ñ Z, where Z is a Gaussian random variable. Combining these results, it
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follows that

Theorem 3.2. Under assumptions (A1)-(A6), and assumptions (U1)-(U3), and (R1)-(R2)
listed in the Supplement Section S.2.,

?
Mpθ̂ ´ θ0q

D
Ñ Np´1 p0,Λpθ0qq ,

where M and an are as defined in assumption (A4), Λpθ0q :“ p∆2Hpθ0qq
´1

Σpθ0q p∆2Hpθ0qq
´1

,

and Σpθ0q “ ppσrspθ0qqqr,s“2,... with

σrspθ0q “

$

&

%

lim
εÑ0

Var
`

1
ε
▽εpX, Y, θ0rq

˘

, if r “ s P t2, . . . , pu,

lim
εÑ0

Cov
`

1
ε
▽εpX, Y, θ0rq,

1
ε
▽εpX, Y, θ0sq

˘

, if r ‰ s, r, s P t2, . . . , pu.

The asymptotic normality of p

sθ “ ppθ1, θ̂q follows from Theorem 3.2 with a simple appli-

cation of the multivariate delta method as pθ1 “

b

1 ´ }θ̂}2, implying p

sθ ´ θ̄0 “ OP pM´1{2q.

Corollary 2. Under the conditions required for Theorem 3.2,

?
Mp

p

sθ ´ θ̄0q
D
Ñ Np

`

0, JΛpθ0qJJ
˘

,

where J “

´´

Bθ̄
Bθ

¯¯ˇ

ˇ

ˇ

θ“θ0
“

˜

´θJ{
a

1 ´ }θ}2

Ip´1

¸
ˇ

ˇ

ˇ

ˇ

ˇ

θ“θ0

is the Jacobian matrix of size pˆpp´1q.

Define the intuitive estimator pΣpθ0q for Σpθ0q given by pΣpθ0q “ pppσklpθ0qqqr,s“2,...,p, with

pσklpθ0q “

$

’

’

’

&

’

’

’

%

1
hM

řM
l“1

p▽2
hpX̃l, Ỹl, θ0rq ´

´

1
hM

řM
l“1

p▽hpX̃l, Ỹl, θ0rq
¯2

, if r “ s,

1
hM

řM
l“1

p▽hpX̃l, Ỹl, θ0rqp▽hpX̃l, Ỹl, θ0sq

´

´

1
hM

řM
l“1

p▽hpX̃l, Ỹl, θ0rq
¯ ´

1
hM

řM
l“1

p▽hpX̃l, Ỹl, θ0sq
¯

, if r ‰ s.

The following two propositions imply consistent estimation of the covariance matrix.

Proposition 3. Under assumptions (A1)-(A6),
?
M

´

vecppΣpθ0qq ´ vecpΣpθ0qq

¯

converges
to a pp ´ 1q2´ dimensional normal distribution with mean vector 0 and a finite covariance
matrix.

Details about the limiting covariance matrix can be found in Section S.1. of the Supple-
ment. A natural estimate for the asymptotic covariance matrix in Theorem 3.2 is pΛpθ̂q :“
´

∆2Vnpθ̂q

¯´1
pΣpθ̂q

´

∆2Vnpθ̂q

¯´1

.

Proposition 4. Under assumptions (A1)-(A6), and assumptions (U1)-(U3), and (R1)-(R2)
listed in the Supplement Section S.2.,

pΛpθ̂q ´ Λpθ0q
P
Ñ 0.
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With Slutsky’s theorem, combining the above propositions with Theorem 3.2,

Corollary 3. Under assumptions (A1)-(A6), and assumptions (U1)-(U3), and (R1)-(R2)
listed in the Supplement Section S.2.,

?
MppΛpθ̂qq

´1{2
pθ̂ ´ θ0q

D
Ñ Np0, Ip´1q,

where M and an are as defined in assumption (A4).

Again it is straightforward to extend the above result to obtain the limit distribution for
the full parameter vector p

sθ “ ppθ1, θ̂q, as due to the constraints the full parameter vector is a
function of the reduced one. Define the estimate for the Jacobian matrix of size p ˆ pp ´ 1q

as Ĵ “

´´

Bθ̄
Bθ

¯¯
ˇ

ˇ

ˇ

θ“θ̂
“

˜

´θJ{
a

1 ´ }θ}2

Ip´1

¸ˇ

ˇ

ˇ

ˇ

ˇ

θ“θ̂

. Then using Corollary 2 and Proposition 4

one has
?
MpĴpΛpθ̂qĴJq´1{2p

p

sθ ´ θ̄0q
D
Ñ Np p0, Ipq , and furthermore

Corollary 4. Under the conditions required for Corollary 3, for any x P X Ă Rp,

d
´

m̂‘pxJp

sθ, p

sθq,m‘pxJθ̄0, θ̄0q

¯

“ OP pM´1{2
q.

In applications of regression models, it is often important to test the statistical signifi-
cance of added predictors. Based on the above normality results, one can obtain Wald-type
statistics to test the significance of certain variables in the linear index. Since θ̄0 is on the
surface of the unit sphere, the constraint }θ̄0} “ 1 removes one dimension. The actual di-
mension of the surface of the unit sphere is p ´ 1 and the values of pp ´ 1q components of
θ̄0 determine θ̄0 when without loss of generality, the value of the first component of θ̄0 is
assumed to be positive. Therefore one can obtain confidence regions for θ̄0 by constructing
confidence regions for the last pp ´ 1q components of θ̄0 only.

A common testing problem concerns the null hypothesis H0: θk “ 0, k “ r, . . . , p , for
any 2 ď r ď p. More general tests of a linear null hypothesis H0: Bθprq “ 0 for a known
matrix B of full row rank and θprq “ pθr, . . . , θpqJ are also of interest and are implied by
the following result, which also provides (elliptical) asymptotic confidence regions for the
components of interest and whereas before M “ Mpnq is the number of bins in the binning
step.

Corollary 5. Under the null hypothesis H0 : Bθprq “ ζ, for some q ˆ pp ´ r ` 1q matrix B

with 1 ď q ď p ´ r ` 1 of rank q, denoting the estimated asymptotic covariance matrix for
θ̂prq by pΛpθ̂prqq, then under the conditions required for Corollary 3,

Tn “ pBθ̂prq
´ ζq

J
pBppΛpθ̂prq

q{Mq
´1BJ

q
´1

pBθ̂prq
´ ζq

D
Ñ χ2

q.
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Specifying the last pp ´ r ` 1q components of the true direction index as
θ

prq

0 “ pθ0r, . . . , θ0pqJ, where r “ 2, . . . , p, a 100p1 ´ γq% confidence region for θ
prq

0 is

Cγ “ tθ P Rp´r`1 : pθ̂prq
´ θq

J
ppΛpθ̂prq

q{Mq
´1

pθ̂prq
´ θq ď c˚

γ, }θ} ă 1u,

with P pχ2
p´r`1 ď c˚

γq “ 1 ´ γ. Here pΛpθ̂prqq is the pp ´ r ` 1q dimensional sub-matrix of the
asymptotic covariance matrix pΛpθ̂q.

Observe that for r “ 2, θ
prq

0 “ θ0. Then Corollary 5 yields the confidence region for
the parameter θ0 as Cγ “ tθ P Rp´1 : pθ̂ ´ θqJppΛpθ̂q{Mq´1pθ̂ ´ θq ď c˚

γ, }θ} ă 1u, with
P pχ2

p´1 ď c˚
γq “ 1 ´ γ. Then the confidence region for θ̄0 can be obtained immediately

through the relationship θ̄0 “ pθ01,θ0qJ with θ01 “
a

1 ´ }θ0}2.

For practical implementation, direct estimation of the asymptotic covariance matrix is
tedious since it involves a tuning parameter to approximate the partial derivative for multiple
variables by finite difference quotients. Instead, we use a nonparametric bootstrap approach
to provide a consistent estimator of the asymptotic covariance matrix (Davison and Hinkley,
1997; Shao and Tu, 2012). Consistency of the bootstrap moment estimators for a general
M-estimator is a well-studied problem. Kato (2011) established uniform integrability of
the bootstrap M-estimator, thereby giving sufficient conditions for the consistency of the
bootstrap moment estimators. Following similar arguments as Theorem 2.2 in Kato (2011),
we obtain consistency of the proposed bootstrap covariance matrix estimator.

Let pX˚
1 , Y

˚
1 q, . . . , pX˚

n, Y
˚
n q denote a bootstrap sample, i.e., an independent sample from

the empirical distribution of the observed sample pX1, Y1q, . . . , pXn, Ynq. The bootstrap
M-estimator of θ0 is θ̂˚ “ argmin

θ P Θ

1
M

řM
l“1 d

2
´

Ỹ ˚
l , m̂‘ppX̃

˚⊺
l θqq

¯

. Here Ỹ ˚
l and X̃

˚

l are the

response and predictor values for observations falling in the l´th bin, l “ 1, . . . ,M. A
bootstrap estimator of the asymptotic covariance matrix is given by (Kato, 2011; Nishiyama,
2010; Buchinsky, 1995; Gonçalves and White, 2005)

Λ̂˚ :“ E
”

Mpθ̂˚
´ θ̂qpθ̂˚

´ θ̂q
⊺
|pX̃1, Ỹ1q, . . . , pX̃M , ỸMq

ı

.

Proposition 5. Under assumptions (A1)-(A6), Λ̂˚ is consistent for the true asymptotic
covariance matrix Λpθ0q.

Combining the above proposition with Theorem 3.2 using the bootstrap covariance esti-
mator, an analog of Corollary 3 immediately follows, as

?
MpΛ̂˚q´1{2pθ̂ ´ θ0q

D
Ñ Np0, Ip´1q,

justifying the bootstrap construction of confidence regions and ensuing inference, where we
approximate the bootstrap covariance matrix Λ̂˚ by Monte Carlo estimation. The observed
sample pX1, Y1q, . . . , pXn, Ynq is resampled with replacement B times and the estimate for
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the index parameter θ̂ computed for each bootstrap sample. Based on the bth bootstrap
sample the index parameter is estimated as θ̂˚

b , b “ 1, . . . B. The bootstrap estimate of the
covariance matrix is then Λ̂˚

B “ 1
B

řB
b“1Mpθ̂˚

b ´ θ̂qpθ̂˚
b ´ θ̂q⊺, which is also consistent for

Λpθ0q.

As an example, if one applies the statistic in Corollary 5 to test the null hypothesis

H0 : θ02 “ ¨ ¨ ¨ “ θ0p “ 0, where θ01 “ 1, (22)

one can examine the power of the test for alternatives indexed by a parameter δ ą 0,

H1δ : θ02 “ ¨ ¨ ¨ “ θ0p “ δ. (23)

Under H0, Tn “ M θ̂JppΛ˚
Bq´1θ̂ „ χ2

pp´1q
asymptotically. Noting that pΛ˚

B is consistent for
Λpθ0q under both H0 and H1δ, the asymptotic distribution of Tn under H1δ is the non-
central chi-square distribution χ2

pp´1q
pρnδq with pp´1q degrees of freedom and non-centrality

parameter ρnδ “ MθJ
δ pΛpθδqq´1θδ, where θδ “ pδ, . . . , δq. The asymptotic power of the level

α test under H1δ is P pTn ą χ2
pp´1q

p1 ´ αqq, where Tn „ χ2
pp´1q

pρnδq, which demonstrates that
for all δ ą 0 the asymptotic power converges to 1 with the rate M´1.

4 Implementation and simulation studies

Implementation of the single index Fréchet regression (IFR) model in (7) requires the choice
of two tuning parameters, the bandwidth b “ bpnq used for the local linear Fréchet regression
as per (4) and the number of bins M “ Mpnq (see assumption (A4)). In applications, the
tuning parameters pb,Mq can be chosen by leave-one-out cross-validation. The first step is
to select the optimal bandwidth parameter b˚ by minimizing the mean discrepancy between
the local linear Fréchet regression estimates and the observed object responses, i.e.,

b˚
“ argmin

b

1

n

n
ÿ

i“1

d2pYi, m̂p´iq

`

XJ
i θ̄, θ̄

˘

q,

where m̂p´iq

`

XJ
i θ̄, θ̄

˘

is the local linear Fréchet regression estimate at XJ
i θ̄ obtained with

bandwidth b based on the sample excluding the i´th pair pXi, Yiq, i.e.,

m̂p´iq

`

XJ
i θ̄, θ̄

˘

“ argmin
ω P Ω

1

pn ´ 1q

ÿ

j‰i

pSpXJ
j θ̄,X

J
i θ̄, bqd

2
pYj, ωq.

In practice, we replace leave-one-out cross-validation by 5´fold cross-validation when
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n ą 30. Once b˚ is chosen a second leave-one-out cross-validation step is applied to select
the number of non-overlapping bins M˚, where the objective function to minimize is the
empirical Fréchet variance for the binned data,

M˚
“ argmin

M

1

M

M
ÿ

l“1

d2pỸl,m
b˚

‘p´lqpX̃
J

l θ̄, θ̄qq.

Here mb˚

‘p´lqpX̃
J

l θ̄, θ̄q is the local linear Fréchet regression estimate at X̃
J

l θ̄ obtained with
bandwidth b based on the sample excluding the observation at the l´th bin pX̃l, Ỹlq, i.e.,

mb˚

‘p´lqpX̃
J

l θ̄, θ̄q “ argmin
ω P Ω

1

n

n
ÿ

i“1

pSpXJ
i θ̄, X̃

J

l θ̄, b
˚
qd2pYi, ωq.

Thus, for each given unit direction θ̄, we first select the optimal tuning parameters
pb˚,M˚q, which will generally vary with θ̄, and then employ them when computing the loss
function Vnpθ̄q. Finally, the index parameter is estimated as p

sθ, the unit direction minimizing
Vnpθ̄q over θ̄ such that θ̄Jθ̄ “ 1. This leads to an iterative scheme, where for a given unit
direction the tuning parameters pb˚,M˚q are initially selected by cross-validation and then
iteratively updated, in turn with updating θ̄ to minimize the loss function. We numerically
optimize the empirical loss Vnpθ̄q under the constraint θ̄Jθ̄ “ 1 via the following algorithm.

1. Take a grid of unit vectors θ̄ such that θ̄Jθ̄ “ 1. This is achieved by generating p dimen-
sional standard Gaussian random vectors with positive first elements and standardizing
them, utilizing the spherical symmetricity of p-dimensional standard Gaussian vectors.

2. For each θ̄, select optimal tuning parameters pb˚,M˚q (for bandwidth and number of
non-overlapping bins, respectively) by cross-validation.

3. Using pb˚,M˚q compute the loss function Vnpθq “ 1
M

řM
l“1 d

2pỸl, m̂‘pX̃
J

l θ̄qq.

4. Find the minimizer θ̂ of Vnpθq such that θ̄Jθ̄ “ 1 by searching over all directions θ̄

generated in step 1. In our implementation, we considered 500 directions.

The computational challenges to obtain Fréchet means vary by metric space. In many
cases, the key idea to compute the weighted Fréchet means reduces to solving a constrained
quasi-quadratic optimization problem and projecting back into the solution space. For ran-
dom objects such as distributions, positive semi-definite matrices, networks, and Riemannian
manifolds among others, obtaining the unique solution is computationally straightforward.
For our simulations we considered random objects corresponding to samples of univariate
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distributions equipped with the Wasserstein´2 metric and samples of multivariate data with
the usual Euclidean metric.

We generated 500 Monte Carlo runs for each setting, and for each run obtained a direction

estimate p

sθ
piq

i “ 1, . . . , 500. The intrinsic Fréchet mean of these 500 estimates on the unit

sphere was then computed as pθ̄. Given that both the p

sθ
piq

and their target θ̄0 lie on the unit
sphere in Rp, bias and deviance of the estimator can be obtained as

biaspp

sθq “ arccosxpθ̄, θ̄0y, devp
p

sθq “ yVarparccosxp

sθ
piq

, p

sθyq. (24)

To illustrate the performance of the Wald-type statistic for testing a linear hypothesis,
we again created Monte Carlo runs as described above except that components of the index
were generated to follow the null hypothesis in (22). To obtain the power function of the
test against the sequence of alternatives given in (23), we calculated the test statistic for 500
simulation runs and determined the fraction of tests that rejected the null hypothesis at the
nominal level α “ 0.05.

4.1 Distributional responses

The space of univariate distributions with the Wasserstein metric provides an ideal setting
for illustrating the efficacy of the proposed methods. For any two distribution objects F,G P

pΩ, dW q, the Wasserstein-2 distance is given by

dW pF,Gq “

ż 1

0

pF´1
psq ´ G´1

psqq
2ds, (25)

where F´1 and G´1 are the quantile functions corresponding to F and G respectively. We
consider distributions on a bounded domain as responses Y p¨q that we represent by their
respective quantile functions QpY qp¨q and that are paired with a p dimensional Euclidean
predictor vector X. The true single index projections xJθ̄0 were obtained by first generating
pZ1, . . . , Zpq⊺ from a multivariate Multivariate Gaussian distribution with EpZjq “ 0 and
CovpZj, Zj1q “ ρ “ 0.25. Then the components of X “ pX1, . . . , Xpq⊺ were computed
as Xj “ 2ΦpZjq ´ 1, where Φ is the standard normal distribution function. Finally, we
generated a p´dimensional unit vector θ̄0 such that }θ̄0} “ 1 and θ̄01 ą 0, and computed
the projection XJθ̄0. We selected p “ 4 and random responses were generated conditional
on X, by adding noise to the true regression quantile function

Qpm‘pxqqp¨q “ E
`

QpY qp¨q|XJθ̄0 “ xJθ̄0

˘

. (26)
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For generating the distributional responses, two simulation settings were examined (see
Table 1). For both scenarios, three different link functions were considered for the data-
generating mechanism, namely ζpzq “ z, ζpzq “ z2, and ζpzq “ exppzq. In the first setting,
the true response was generated as a normal distribution with parameters depending on
XJθ̄0. For XJθ̄0 “ xJθ̄0, the distribution parameters µpxq „ NpζpxJθ̄0q, 0.25q and σpxq „

Expp1{ηpxJθ̄0qq were independently sampled, where ηpzq “
exppzq

1`exppzq
. The corresponding

distribution-valued regression function is given by m‘pxJθ̄0q “ EpQpY qp¨q|XJθ̄0 “ xJθ̄0q “

ζpxJθ̄0q ` ηpxJθ̄0qΦ´1p¨q, where Φp¨q is the standard normal distribution function.
For the second setting, the distributional parameter µpxq was sampled as before, while

the standard deviation parameter was fixed at σ “ 0.1. The resulting distributions were then
subjected to a random transport map T in Wasserstein space that is uniformly sampled from
the collection of transport maps Tkpaq “ a ´ sinpkaq{|k| for k P t˘1,˘2,˘3u. The observed
distributions are not Gaussian anymore due to the added random transports Nevertheless,
the Fréchet mean can be shown to equal ζpxJθ̄0q ` σΦ´1p¨q.

In Table 1, T#p is a push-forward measure such that T#ppAq “ pptx : T pxq P Auq,
for any measurable function T : R Ñ R, distribution p P W , and set A Ă R. Here p is a
Gaussian distribution with parameters µ and σ as described above, and W is the metric
space of distributions on a compact support equipped with the 2-Wasserstein metric.

Table 1: Two different simulation settings for distributional objects.

Setting I Setting II
QpY qp¨q “ µ ` σΦ´1p¨q,
where
µ „ NpζpxJθ̄0q, 0.25q,

σ „ Exp
´

1`exppxJθ̄0q

xJθ̄0

¯

.

QpY qp¨q “ T#pµ ` σΦ´1p¨qq,
where
µ „ NpζpxJθ̄0q, 0.25q, σ “ 0.1,
Tkpaq “ a ´ sinpkaq{|a|, k P t˘1,˘2,˘3u.

Following these specifications, for each Monte Carlo run we generated n density objects
and multivariate Euclidean predictors from the true model. The bias and deviance of the
estimated direction vectors for varying sample sizes and resulting from 500 Monte Carlo runs
are displayed in Table 2. The bias due to the local linear Fréchet estimation is generally low
and the variance of the estimates is seen to diminish with increasing sample size.

The performance of the proposed method was further evaluated by computing the mean
squared deviation (MSD) between the observed and the fitted distributions. Denoting the
simulated true and estimated distribution objects by m‘pX̃

J

l θ̄0q and m̂‘pX̃
J

l
p

sθq, respectively,
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Table 2: Two different simulation settings for distributional objects. Bias and deviance
(within parenthesis) of p

sθ (measured in radians as per (24)) obtained from 500 Monte Carlo
runs, where the predictor dimension is p “ 4, and the tuning parameters pb,Mq were chosen
by 5´fold cross-validation.

Setting I Setting II
link1

px ÞÑ xq

link2
px ÞÑ x2q

link3
px ÞÑ exppxqq

link1
px ÞÑ xq

link2
px ÞÑ x2q

link3
px ÞÑ exppxqq

bias dev bias dev bias dev bias dev bias dev bias dev
n = 100 0.041 0.029 0.053 0.039 0.045 0.061 0.029 0.027 0.022 0.037 0.028 0.044
n = 1000 0.023 0.013 0.027 0.012 0.029 0.012 0.010 0.012 0.011 0.014 0.017 0.021

for l “ 1, . . . ,M, the utility of the estimation was measured quantitatively by

MSD “
1

M

M
ÿ

l“1

d2W pm‘pX̃
J

l θ̄0, θ̄0q, m̂‘pX̃
J

l
p

sθ, p

sθqq, (27)

where dW p¨, ¨q is the Wasserstein-2 distance between two distributions.
We compared the estimation performance of the proposed single index Fréchet regression

(IFR) method with global Fréchet regression (GFR), which directly handles multivariate
predictors as it is a generalization of global least squares regression (Petersen and Müller,
2019). Since local linear Fréchet regression (LFR) is subject to the curse of dimensionality
and not suitable for p “ 4 predictors, we fitted four separate LFR models in turn for each of
the univariate component predictors and computed the Mean Squared Deviation (MSD) for
each of these four fits. No binning is required for either GFR or LFR model fits. In Figure 1
we denote the MSDs for the four local linear Fréchet regression fits as LFR1, LFR2, LFR3,
and LFR4, respectively. Figure 1, displaying boxplots of the MSDs over 500 simulation
runs for a sample size of n “ 1000. The left and right panels correspond to simulation
settings I and II, respectively, and in each panel, three cases are considered corresponding
to the different link functions used to generate the distributional data. Overall six Fréchet
regression methods are compared, for two simulation settings and three data generation
mechanisms. We observe that the IFR method outperforms the baseline GFR and all four
of the LFR methods in all scenarios. The smallest difference between the IFR and GFR
occurs when an identity link function is used in the data generation mechanism. This is as
expected since in this case the true model essentially reduces to GFR, the equivalent of a
linear model. The individual LFR models have higher MSDs, which can be attributed to
the fact that we are ignoring the effect of the other predictors when fitting the local model
with one predictor at a time.

Figure 2 demonstrates the effect of the index values on the distributional objects under
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Figure 1: Boxplot of the mean squared deviation (MSD) of the fits using the single index
Fréchet regression model (IFR), the Global Fréchet regression (GFR) model, and four Local
Fréchet Regression (LFR) models using the univariate predictor components, for sample size
n “ 1000. Left and right panels correspond to simulation settings I and II, respectively. The
left, middle, and right columns in each of the panels correspond to the three different link
functions used in the data generation mechanism, namely, identity, square, and exponential
link functions, respectively; in all scenarios, the link functions are estimated from the data.
In the left panel, the outliers having MSD greater than 1 are marked in red with an upward
arrow and the corresponding MSD values are overlaid.

simulation setting I for the different link functions when responses are represented in the
form od densities. The three data generation mechanisms are shown in the left, middle,
and right panels of Figure 2 respectively. For each case, the IFR model was fitted at the
mean and mean˘2 sigma levels of the index values, displayed in red, blue, and green lines
respectively, while the observed/simulated densities are overlaid in orange in each panel. In
each case, for a higher value of the index level, the fitted densities shift towards the top-right,
indicating a positive association of the single-index values on the mode of the distributions.

To illustrate the out-of-sample prediction performance of the proposed IFR model, the
dataset was randomly split into a training set with sample size ntrain “ t2 ˚ n{3u and a test
set with the remaining ntest “ n ´ t2 ˚ n{3u subjects. The IFR method was implemented as
follows: for any given unit direction θ̄ P Θ̄, we partition the domain of the projections into
M equal-width non-overlapping bins and consider the representative observations X̃l and Ỹl

for the data points belonging to the l´th bin. The “true” index parameter was estimated as
p

sθ as per (12). We then took the fitted index obtained from the training set and predicted
the responses in the test set using the covariates present in the test set. As a measure of the
efficacy of the fitted model, we computed the root mean squared prediction error (RMPE)
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Figure 2: Simulated (orange) and fitted (red, blue, and green) distributional objects rep-
resented as densities for simulation setting I for sample size n “ 1000. The left, middle,
and right panels correspond to three link functions (identity, square, and exponential link)
used in the data generation process. In each case, the IFR model fits are obtained at three
different levels of the estimated index values, namely, at t “ meanpxJp

sθq ´2ˆ sd(xJp

sθ) (red),
t “ mean(xJp

sθ) (blue) and t “ meanpxJp

sθq ` 2ˆ sd(xJp

sθ) (green).

as

RMPE “

«

1

Mntest

Mntest
ÿ

i“1

d2W

´

Ỹ test
l , m̂‘pX̃test⊺

l
p

sθ, p

sθq

¯

ff1{2

, (28)

where Ỹ test
l and m̂‘pX̃test⊺

l
p

sθ, p

sθq denote, respectively, the lth observed and predicted responses
in the test set, evaluated at the binned observation X̃test

l and dW denotes the Wasserstein-2
metric in (25). We repeated this process 500 times and computed RMPE for each split for
the subjects separately. The mean and sd of the RMPE over the repetitions are shown in
Table 3. The IFR model is seen to fare best across the different models and scenarios.

For the case of distributional objects, the linear hypothesis test of H0 in (22) against the
sequence of alternatives H1δ in (23) was also carried out. The power functions corresponding
to the two simulation settings are shown in Figure 3a and 3b, respectively. As δ increases,
the power is seen to increase rapidly. This shows that the proposed test has non-trivial power
(see Figure 3). When δ is close to 0, the test sizes are approximately equal to the nominal
significance level of α “ 0.05. As expected, power increases with increasing sample size, most
notably under the identity link. In the second simulation setting when the distributional
objects are obtained by transporting a normal distribution, the power function increases at
a slower rate, especially under the highly nonlinear (exponential) link function.

4.2 Adjacency Matrices as Responses

These were generated for weighted graphs as random object responses; details are in Sub-
section ?? of the Supplement.
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Table 3: Mean and sd (in parenthesis) of the RMPE as given in (B.18) comparing the
performance of various Fréchet regression models: Index Fréchet Regression (IFR), Global
Fréchet Regression (GFR), Local Fréchet Regression (LFR). The LFR fits are obtained for
four individual predictor components separately.

Setting I Setting II
Identity

link
Square

link
Exponential

link
Identity

link
Square

link
Exponential

link

IFR 0.0023
(0.0012)

0.0092
(0.0276)

0.0302
(0.0979)

0.0490
(0.0330)

0.1452
(0.0286)

0.1666
(0.0988)

GFR 0.0136
(0.0002)

0.1668
(0.0085)

0.1599
(0.0176)

0.0661
(0.0189)

0.2531
(0.0095)

0.3413
(0.0186)

LFR1 0.0478
(0.0014)

0.1671
(0.0084)

0.3516
(0.0299)

0.0679
(0.0191)

0.1317
(0.0096)

0.2371
(0.0310)

LFR2 0.0479
(0.0015)

0.1667
(0.0081)

0.3507
(0.0294)

0.0563
(0.0190)

0.1666
(0.0091)

0.1881
(0.0302)

LFR3 0.0476
(0.0020)

0.1684
(0.0133)

0.3468
(0.0296)

0.1218
(0.0191)

0.1992
(0.0142)

0.1812
(0.0304)

LFR4 0.0454
(0.0062)

0.1659
(0.0101)

0.3346
(0.0284)

0.0880
(0.0189)

0.2177
(0.0110)

0.2033
(0.0293)
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Figure 3: Empirical power as function of δ for density object responses. The black, red,
and blue curves correspond to the identity, square, and exponential link functions used in
the data-generating mechanism, respectively, while the dashed and solid lines correspond to
sample sizes n “ 100 and n “ 1000 respectively. The level of the tests is α “ 0.05 and is
indicated by the dashed line parallel to the x-axis.

4.3 Euclidean Responses

We applied the new approach targeting general random objects as responses for the special
case of Euclidean responses. It is not specifically designed for this case, where targeted,
well-studied and well-honed single index models have a long history. The numerical results
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show that the proposed method yields results that are somewhat inferior but overall still
comparable to those obtained with specially tailored traditional single index approaches; see
Subsection S.4.4 of the Supplement.

5 Data analysis

5.1 Resting state functional Magnetic Resonance Imaging: ADNI data

Resting-state functional Magnetic Resonance Imaging (fMRI) methodology makes it possible
to study brain activation and to identify brain regions or cortical hubs that exhibit similar
activity when subjects are in the resting state (Allen et al., 2014; Ferreira and Busatto,
2013). In resting state fMRI, time series of Blood Oxygen Level Dependent (BOLD) signals
are observed in regions of interest (ROI), where each ROI is represented by the signal of a
seed voxel, which is the voxel in an ROI that has the highest correlation with the signals of
nearby voxels. Alzheimer’s Disease has been found to be associated with anomalies in the
functional integration of ROIs (Damoiseaux et al., 2012; Zhang et al., 2010).

Data used in the preparation of this article were obtained from the Alzheimer’s Dis-
ease Neuroimaging Initiative (ADNI) database (adni.loni.usc.edu). BOLD signals for
V “ 11 brain seed voxels for each subject were extracted for the following ROIs: MPFC
(Anterior medial prefrontal cortex), PCC (Posterior cingulate cortex), dMFPC (Dorsal me-
dial prefrontal cortex), TPJ (Temporal parietal junction), LTC (Lateral temporal cortex),
TempP (Temporal pole), vMFPC (Ventral medial prefrontal cortex), pIPL (Posterior infe-
rior parietal lobule), Rsp (Retrosplenial cortex), PHC (Parahippocampal cortex) and HF`

(Hippocampal formation) (Andrews-Hanna et al., 2010). The pre-processing of the BOLD
signals was implemented by adopting standard procedures of slice-timing correction, head
motion correction and other standard steps. The signals for each subject were recorded
over the interval r0, 270s (in seconds), with K “ 136 measurements available at two-second
intervals. From this the temporal correlations were computed to construct the connectivity
correlation matrix, also referred to as the Pearson correlation matrix in the neuroimaging
community.

The data set in our analysis consists of n “ 830 subjects at four stages of the disease:
372 CN (cognitively normal), 113 EMCI (early mild cognitive impairment), 200 LMCI (late
mild cognitive impairment), and 145 AD (Alzheimer’s) subjects. The inter-hub connectivity

adni.loni.usc.edu
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Pearson correlation matrix for the i ´ th subject Yi with elements

pYiqqr “

řK
p“1psipq ´ s̄iqqpsipr ´ s̄irq

”´

řK
p“1psipq ´ s̄iqq2

¯ ´

řK
p“1psipq ´ s̄iqq2

¯ı1{2
, q, r “ 1, . . . , 11 (29)

is the response object for each subject, where sipq is the pp, qqth element of the signal matrix
for the ith subject and s̄iq :“

1
K

řK
p“1 sipq is the mean signal strength for the qth voxel. For

Alzheimer’s disease studies, the ADAS-Cog-13 score (henceforth referred to as C score) is
a widely-used measure of cognitive performance. It quantifies impairments across cognitive
domains that are affected by Alzheimer’s disease (Kueper et al., 2018); higher scores indicate
more serious cognitive deficiency.

We considered p “ 10 predictors, namely, X1 “ stage for the disease (coded as 0-3,
indicating Cognitive normal (CN), Early and Late Mild cognitive impairment (EMCI and
LMCI), or Alzheimer’s Disease (AD), respectively), X2 “ age of the subject (in years),
X3 “ 0 is the subject is female and “ 1 if male), X4 “C score for the subject at the time of
the first scan, and additionally all pairwise interaction terms between the above predictors,
i.e., the products XjXk, j ‰ k, 1 ď j, k ď 4

In a first step, we test the null hypothesis of no regression effect, i.e., with p “ 5,

H0 : θ0 “ 0pp´1qˆ1 vs. H1 : not all θ0j are 0, j “ 2, . . . , p,

where θ̄0 “ pθ01,θ0qJ and θ0 “ pθ02, . . . , θ0pqJ with θ01 “
a

1 ´ }θ0}2. The null model has
X1 included with θ01 “ 1 since it is known that the stage of cognitive impairment has an
effect on brain connectivity/ We obtain an estimate of the pp ´ 1q´ dimensional vector θ̂

as the minimizer of Vnpθq as per (16) and θ̂01 “

b

1 ´ }θ̂}2. Under the null hypothesis,
T̃n “ θ̂JppΛ˚

Bq´1θ̂
approx.

„ χ2
pp´1q

. We find that T̃n “ 23.81, corresponding to a p value of
p “ 0.0046 ă 0.005, providing evidence that there is indeed a regression relationship. We

Table 4: Details on step-wise model selection.

Step 1 Step 2 Step 3
Coeff. p-value Coeff. p-value Coeff p-value

Age -0.364 0.005 -0.394 - -0.401 -
Gender 0.198 0.122 0.558 0.161 0.173 0.113
C Score 0.371 0.094 0.207 0.010 0.279 -

also implemented sequential predictor selection, where we specified an “alpha-to-enter” level
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α “ 0.05 and considered X1 to be in the model and included each of X2, X3, and X4 in
the model separately along with X1 then testing the null hypotheses θj “ 0, j “ 2, 3, 4

separately. Table 4 illustrates the resulting step-wise model selection.
For example, for testing θ2 “ 0, we first obtained θ̂2 “ ´0.364, θ̂1 “

a

1 ´ p´.364q2 “

0.931) and T̃n “ 7.88 with a p-value of 0.005. Thus X2 (age) was added to the model in step
1, followed by adding X4 (C score) in step 2, while X3 (gender) was not significant. With
X1, X2, and X4 in the model, we tested for the significance of the pairwise interaction terms.
The null hypothesis for this test is H0 : θ5 “ θ6 “ ¨ ¨ ¨ “ θ10 “ 0. The p-value was 0.106,

and we did not include interactions in the final model. The estimated average Fréchet error
1
n

řn
i“1 d

2pYi, m̂‘pX1iθ̂1 ` X2iθ̂2 ` X4iθ̂4qq was quite small p0.239q.

To construct the confidence regions for the coefficients pθ1, θ2, θ4q, we implemented the
local linear Fréchet regression with the Epanechnikov kernel and used 5-fold cross-validation
to select the bandwidth b. Using the bootstrap method to obtain the estimated covariance
matrix of the limiting distribution we obtained the 95% pairwise confidence ellipses for the
coefficients pθ1, θ2, θ4q of the predictors- disease stage, age, and C score, which are displayed
in Figure 4. We observe that none of the pairwise confidence ellipses includes the origin and
therefore the p-values are ă 0.05, implying the significance of the predictors.
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Figure 4: The 95% confidence ellipses for pairs of coefficients for predictors stage of the
disease (X1), age (X2), and C score (X4).

To illustrate the effect of the single index on the response, we computed the estimated
index of the fitted model for each subject and then obtained the 25%, 50%, and 75% quantiles
across all subjects, with values q1 “ 15.048, q2 “ 16.430 and q3 “ 18.250, respectively. The
values of the four covariates for the subjects with estimated index values closest to q1, q2, and
q3 are in Table 5, and their observed and fitted functional connectivity correlation matrices
are illustrated in Figure 5. The fitted correlation matrices correspond to the values of the
estimated object link function at the three index values and are contrasted with the observed
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correlation matrices for the three subjects. This gives an idea of how the fitted correlation
matrix changes as the index move through the three quantile levels.

Table 5: Covariate values for the subjects with estimated index values closest to the first three
quantiles of the estimated index when considered across all subjects, q1p15.048q, q2p16.430q,
and q3p18.250q, respectively. Subject 726 has an estimated index value that is closest to q1,
subject 695 closest to q2, and subject 556 closest to q3.

Subject
number

Estd.
index value

Stage of the
disease Age Gender C score

726 15.045 2 66.10 y M 20.33
695 16.430 2 78.12 y M 14
556 18.252 1 72.55 y M 51.67

We observe that the fits match the general pattern of the observed matrices quite well.
The Frobenius distances between the observed and the estimated matrices at q1, q2, and q3

are 1.68, 1.10, and 0.79, respectively. The fitted model reflects the trends seen in the observed
correlation matrices and illustrates the nonlinear dependence of functional connectivity on
the index value.

We also studied the out-of-sample prediction performance of the proposed IFR model,
for which we used the root mean squared prediction error

RMPE “

«

1

Mntest

Mntest
ÿ

i“1

d2F

´

Ỹ test
l , m̂‘pX̃

J

l
p

sθ, p

sθq

¯

ff1{2

, (30)

where Ỹ test
l and m̂‘pX̃

J

l
p

sθq denote, respectively, the lth observed and predicted responses in
the test set, evaluated at the binned observation X̃l. Here, ntrain and ntest denote the sample
sizes of the training and testing sets formed by randomly splitting the data. We repeated this
process 200 times, and computed RMPE for each split for the subjects separately. The tuning
parameters pb,Mq were chosen by a 5´fold cross-validation method for each replication of the
process. The prediction performance of the IFR model was compared with other applicable
Fréchet regression models, namely, the global Fréchet regression (GFR) model with the
three-dimensional predictor pX1, X2, X4q and two separate local linear Fréchet regression
(LFR) models, one with the single predictor X2 (age) and the other with the single predictor
X4 (C score). When comparing the performance of these models (Table 6), we find that
the out-of-sample prediction error is low for the IFR model, as compared to the global and
local Fréchet regression approaches. In fact, it is not far from the in-sample prediction error
p0.251q, calculated as the average distance between the observed training sample and the
predicted objects based on the covariates in the training sets. This motivates the proposed
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Figure 5: Observed and fitted functional connectivity correlation matrices for different val-
ues of the single index. The panels in the top row, from left to right, depict the observed
functional connectivity correlation matrices for those subjects for whom the estimated index
values are closest to the 25%, 50%, and 75% quantile of all indices across subjects, respec-
tively. The bottom row shows the fitted functional connectivity correlation matrices for the
same subjects, (from left to right). Positive (negative) values for correlations are drawn in
red (blue), where larger circles correspond to larger absolute values.

Table 6: Mean and sd (in parenthesis) of the root mean prediction error (RMPE) over 200
Monte Carlo simulation runs for various object regression methods. The methods compared
are index Fréchet regression (IFR); global Fréchet Regression (GFR) with the three predictors
stage of the disease, age, and ADSA score; and two local linear Fréchet regression (LFR)
models with separate one-dimensional predictors.

IFR GFR LFR1
(Predictor Age)

LFR2
(Predictor C Score)

0.3066 (0.012) 0.5083 (0.011) 0.5076 (0.012) 0.5326 (0.013)

IFR models.
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5.2 Human mortality data: Age-at-death distributions as responses

Lifetables reflecting human mortality across 40 countries correspond to distributional re-
sponses, coupled with various country-specific covariates. We implement an overall test
for the regression effect for these data. Details about this analysis are in the Supplement,
subsection S.4.1.

5.3 Emotional well-being of unemployed workers: Compositional data as re-
sponses.

We further demonstrate the proposed IFR method for the analysis of mood compositional
data. Here the object-valued responses lie on a manifold (sphere) with positive curvature.
Thus the sufficient (but not necessary) condition for assumption (A5) that the underlying
metric space behaves like a CAT(0) space is not satisfied, however, the numerical performance
of the IFR method remains quite good; see Supplement, subsection S.4.2. This suggests a
certain degree of model robustness.

6 Discussion

Binning the data to reduce the effective sample size is not necessary for the basic consistency
results without rates. As discussed at the end of Section 2, the binning method is introduced
in order to invoke the uniform consistency rate for the local Fréchet regression and the
effective sample size M “ Mpnq is tied to this rate by virtue of assumption (A4). To avoid
confusion, we discuss the binning approach throughout. The rate of convergence for p

sθ´ θ̄0 is
M´1{2. Since our rate results and proofs rely on the uniform convergence rate of local Fréchet
regression, this rate cannot be improved within the current framework and overcoming these
limits would require a fundamentally different approach.

The assumptions required to obtain the technical results are essentially the same as
those used before in the Fréchet regression literature, specifically in Chen and Müller (2022).
We require curvature and entropy conditions to hold uniformly across all index values and
direction parameters. The curvature and entropy conditions can be verified for commonly
observed objects such as univariate probability distributions, positive definite matrices, or
data on the surface of a sphere, as well as other random objects under suitable metrics.
The Lipschitz condition (A2) on the link function is standard in single-index models, while
assumption (A5) reflects the interplay between the properties of the metric and the link
function. Assumption (A5) is implied by the easier-to-interpret assumption (K1)-(K3) (see
Appendix Appendix B).

The classical single index model for Euclidean responses has been recently extended to a
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single index coefficient model for quantile regression (Zhao et al., 2017). This is a desirable
extension for the object case of index Fréchet regression as well. One problem to resolve
in this case is to define quantiles in the metric space where the object responses lie since
there is no order. The problem of defining quantiles is already difficult and ambiguous for
multivariate Euclidean objects. This is a potentially interesting topic for future research.

Finally, inference results for object regression are scarce. For example, the Wasserstein
F -tests proposed by Petersen et al. (2021) are exclusively aimed at univariate distribution
quantiles within the specific setting of global Fréchet regression. We provide here a general
framework to obtain inference for the case of vector predictors coupled with object responses,
which includes generalized versions of inference for model comparisons and for assessing the
significance of individual predictors.

Appendix A: Geodesics and curvature

The length of a curve ϕ : r0, 1s Ñ Ω connecting two distinct points x, y P Ω can be measured
by taking partitions P “ tt0 ď t1 ď ¨ ¨ ¨ ď tku Ă r0, 1s and finding the supremum polygonal
length

|ϕ| :“ sup
PPP

k
ÿ

j“1

dpϕptjq, ϕptj´1qq,

where P is any collection of subsets of r0, 1s with finite cardinality. The metric space pΩ, dq

is a length space if dpx, yq “ infϕ |ϕ|, where the infimum ranges over all curves ϕ : r0, 1s Ñ Ω

connecting two distinct points x and y, that is, i.e., ϕp0q “ x and ϕp1q “ y. A geodesic
on Ω connecting two distinct points x and y is the shortest path connecting the two points.
Geodesics in a metric space are analogous to straight lines in a Euclidean space.

Unlike Euclidean spaces, a general metric space may not be flat, and curvature is used
to measure the amount of deviation from being flat. The curvature of a given geodesic
space is classified by comparing the geodesic triangles on the metric space to those on the
corresponding reference spaces M2

κ . When κ “ 0, M2
κ “ R2 with the standard Euclidean

distance dEpx, yq “ ||x ´ y||E, for any x, y P R2. A geodesic triangle with vertices p, q, r in a
geodesic space Ω, denoted by △pp, q, rq, consists of three geodesic segments that connect p

to q, p to r and q to r, respectively. A comparison triangle △pp̄, q̄, r̄q in the reference space
M2

k “ R2 is a geodesic triangle in R2 formed by the vertices p̄, q̄, and r̄ such that,

dpp, qq “ ||p̄ ´ q̄||E, dpq, rq “ ||q̄ ´ r̄||E, dpp, rq “ ||p̄ ´ r̄||E. (A.1)

Ω is said to have a non-positive curvature if there exists a comparison triangle △pp̄, q̄, r̄q in
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Figure A.6: Left figure: Geodesic triangle formed by the three points u, m‘pz0q, m‘pz0`2aq,
where v is the midpoint of the geodesic connecting the points m‘pz0q and m‘pz0 ` 2aq. The
red line depicts the true regression function m‘. m‘pz0 ` aq is closely approximated by v
lying on a geodesic that connects m‘pz0q with m‘pz0 ` 2aq. Right figure: Reference triangle
in R2 as an illustration of the CAT(0) inequality.

the reference space R2 such that dpx, yq ď ||x̄ ´ ȳ||E for all x P pq and y P pr and their
comparison points x̄ and ȳ on △pp̄, q̄, r̄q. A geodesic space with curvature upper bounded
by 0, in which every geodesic triangle △pp, q, rq satisfies the following CATp0q inequality is
a CAT(0) space,

dpx, yq ď ||x̄ ´ ȳ||E for all x P pq and y P pr and their comparison points x̄, ȳ P R2. (A.2)

Every CAT(0) space is uniquely geodesic. Examples of CAT(0) spaces include Euclidean
space, the space of symmetric positive definite matrices, Wasserstein-2 spaces, or phyloge-
netic tree spaces. For a detailed introduction to metric geometry, we refer to Burago et al.
(2001). A compilation of the most relevant facts can be found in Lin and Müller (2019).

Appendix B: Sufficient conditions for assumption (A5)

We discuss here sufficient conditions under which assumption (A5) holds. For this we consider
the following assumptions:

(K1) pΩ, dq is a CAT(0) space, that is every geodesic triangle satisfies the CAT(0) inequality
in (A.2).

For any z0 P R, and u P Ω, there exists some a0 ą 0, such that for small enough a P p0, a0s,

we may consider the geodesic triangle formed by u, m‘pz0q, m‘pz0 ` 2aq for z0, z0 ` 2a P T ,

for which we assume the following.
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(K2) Defining the midpoint v of the geodesic path connecting m‘pz0q and m‘pz0 ` 2aq such
that

dpm‘pz0q, vq “ dpm‘pz0 ` 2aq, vq “
1

2
dpm‘pz0 ` 2aq,m‘pz0qq, (B.1)

we require

dpm‘pz0 ` aq, vq ď C˚a
2, (B.2)

where C˚ ą 0 does not depend on z0, and is such that, L2
˚ ą 2DC˚, L˚ and D being

the lower Lipschitz constant for m‘ from assumption (A2), and the diameter of the
metric space Ω, respectively.

(K3) There exist real constants L˚ ą 0 such that, for all x with norm bounded both above
and below, and for all θ̄1, θ̄2 P Θ̄,

d
`

m‘pxJθ̄1, θ̄1q,m‘pxJθ̄2, θ̄2q
˘

ě L˚}θ̄1 ´ θ̄2}.

Figure B.7 illustrates the geometry of the geodesic triangles in Ω and its reference space
R2. Assumption (K2) can be verified when the link function m‘ is smooth enough for the
case of conventional Euclidean single index models. It thus provides an extension of the
usual smoothness assumption in the case of random object responses. In section C of the
Supplement We discuss this further in the context of Euclidean responses and in the case
where the responses lie in the space of distributions equipped with Wasserstein-2 metric, and
derive assumption (A5) under the sufficient conditions (K1), (K2), and (K3).

Assumption (K3) in conjunction with assumption (A2) implies that the link function m‘

is bi-Lipschitz. This limits the rate at which the object m‘ can change, essentially it cannot
change too fast or too slowly. A bi-Lipschitz function is an injective Lipschitz function whose
inverse function is also Lipschitz. The bi-Lipschitz condition is stronger than the common
assumption of a monotone link function in classical single index modeling with Euclidean
responses. In the special case of Ω “ R this reduces to requiring a monotone differentiable
function with strictly positive derivative almost everywhere and restricts the monotonicity
to a smaller subclass of strictly monotone functions. In the special case of Euclidean re-
sponses, this simplifies to the assumption that the link function m‘ “ m is monotone and
differentiable such that m1pxq is strictly monotone with continuous derivative bounded away
from zero. Such technical assumptions are commonly used for deriving distributional results
in the existing single index literature, by virtue of a Taylor expansion of the link function m

in the Euclidean case.
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Supplementary Material

S.1. Technical assumptions (U1)- (U3), (R1)- (R2)

In this section, we describe the technical assumptions needed to establish the uniform rate
of convergence for the local linear Fréchet regression estimator in Lemma 1 in Section 3 of
the main manuscript. We also provide motivation and discuss suitable examples regarding
the assumptions.

The assumptions required to obtain the technical results are essentially the same as
those used before in the Fréchet regression literature, specifically in Chen and Müller (2022).
To adapt these assumptions to the present situation, we require the curvature and entropy
conditions to hold uniformly across all index values and direction parameters. The curvature
and entropy conditions can be verified for commonly observed objects such as univariate
probability distributions, positive definite matrices, or data on the surface of a sphere, as
well as other random objects under suitable metrics.

Denote by Tθ̄ the support of the random variable T “ XJθ̄ for any given unit direction
θ̄ P Θ̄, where Θ̄ is defined in equation (2.5) of the main manuscript. Under assumption (A3),
for bounded random variables X, we can write Tθ̄ Ă T for some bounded subset T of R.
For a given direction θ̄ P Θ̄ such that XJθ̄ “ t, where Θ̄ is as given in equation (2.5), the
conditional Fréchet mean is given by

m‘pt, θ̄q “ argmin
ω P Ω

Mpω, t, θ̄q; Mpω, t, θ̄q :“ Epd2pY, ωq|XJθ̄ “ tq, (B.3)

and the local linear Fréchet regression estimate by

m̂‘pt, θ̄q “ argmin
ω P Ω

L̂npω, t, θ̄q; L̂npω, t, θ̄q :“
1

n

n
ÿ

i“1

pSpXJ
i θ̄, t, bqd

2
pYi, ωqq, (B.4)

where pS is the empirical estimate (from equation (2.10)) of the nonparametric weight func-
tion (described in equation (2.8)) in Section 2 of the main manuscript and b is the bandwidth
parameter for the kernel involved in the localized Fréchet mean. We also define the interme-
diate localized weighted Fréchet means as

m̃‘pt, θ̄q “ argmin
ω P Ω

L̃bpω, t, θ̄q; L̃bpω, t, θ̄q :“ EpSpXJθ̄, t, bqd2pY, ωqq, (B.5)

where the nonparametric weight function is described in equation (2.8) in the main manuscript.
The following additional assumptions are required, which are analogous versions of the as-
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sumptions in Chen and Müller (2022).

(U1) For all t P T and θ̄ P Θ̄, the minimizers m‘pt, θ̄q, m̂‘pt, θ̄q, and m̃‘pt, θ̄q exist and are
unique, the latter two almost surely. In addition, for any ε ą 0,

inf
tPT

inf
dpm‘pt,θ̄q,ωqąε

rMpω, t, θ̄q ´ Mpm‘pt, θ̄q, t, θ̄qs ą 0,

lim inf
bÑ0

inf
tPT

inf
dpω,m̃‘pt,θ̄qqąε

rL̃bpω, t, θ̄q ´ L̃bpm̃‘pt, θ̄q, t, θ̄qs ą 0,
(B.6)

and there exists c “ cpεq ą 0 such that

P

ˆ

inf
tPT

inf
dpm̂‘pt,θ̄q,ωqąε

rL̂npω, t, θ̄q ´ L̂npm̂‘pt, θ̄q, t, θ̄qs ě c

˙

Ñ 1. (B.7)

(U2) Let Brpm‘pt, θ̄qq Ă Ω be a ball of radius r centered at m‘pt, θ̄q and
N pε,Brpm‘pt, θ̄qq, dq be its covering number using balls of radius ϵ. Then

lim
rÑ0`

ż 1

0

sup
tPT

b

1 ` logN prε,Brpm‘pt, θ̄qq, dqdϵ “ Op1q. (B.8)

(U3) There exists r1, r2 ą 0, c1, c2 ą 0, and β1, β2 ą 1 such that

inf
tPT

inf
dpm‘pt,θ̄q,ωqăr1

rMpω, t, θ̄q ´ Mpm‘pt, θ̄q, t, θ̄q ´ c1d
2
pω,m‘pt, θ̄qq

β1s ě 0,

lim inf
bÑ0

inf
tPT

inf
dpω,m̃‘pt,θ̄qqăr2

rL̃bpω, t, θ̄q ´ L̃bpdpm̃‘pt, θ̄q, t, θ̄q ´ c2d
2
pω, m̃‘pt, θ̄qq

β2s ě 0.

(B.9)

Furthermore, we require the following assumptions for kernels and distributions.

(R1) The kernel K is a probability density function, symmetric around zero, uniformly
continuous on R such that

ş

RKpxqjxk ă 8, for j, k “ 1, . . . 6. The derivative K 1

exists and is bounded on the support of K, i.e., supx:Kpxqą0 |K 1pxq| ă 8. Additionally,
ş

R x
2|K 1pxq|

a

|x log |x||dx ă 8.

(R2) For any given unit direction θ̄ P Θ̄, the marginal density fT,θ̄ of T “ XJθ̄ and the
conditional densities fT,θ̄|Y p¨, yq of T given Y “ y exist and are twice continuously differ-
entiable in the interior of T for all θ̄ P Θ̄, the latter for all y P Ω. The marginal density
fT,θ is bounded away from zero on its support T for all θ̄ P Θ̄ i.e., inftPT fXJθ̄ptq ą 0.

The second-order derivative f2

T,θ̄
is uniformly bounded for all t P T , θ̄ P Θ̄, that is,

suptPT |f2

T,θ̄
ptq| ă 8. The second-order partial derivatives pB2fT,θ̄|Y {Bt2qp¨, yq are uni-
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formly bounded, uniform over all θ̄ P Θ̄, i.e.,
suptPT supyPΩ |pB2fT,θ̄|Y {Bt2qp¨, yq| ă 8.

Additionally, for any open set B Ă Ω, P pY P B|XJθ “ tq is continuous as a function
of t and θ̄. For any t P T and θ̄ P Θ̄, Mpω, t, θ̄q is equicontinuous, that is,

lim sup
θ̄1Ñθ̄2

sup
tPT

sup
ωPΩ

ˇ

ˇMpω, t, θ̄1q ´ Mpω, t, θ̄2q
ˇ

ˇ “ 0.

Similar yet weaker assumptions have been made in Petersen and Müller (2019) for pointwise
rates of convergence for local linear Fréchet regression estimators. Chen and Müller (2022)
made stronger assumptions in this regard to establish uniform convergence results over uni-
variate predictor values. In the above assumptions (U1)- (U3) we adapt those in Chen
and Müller (2022), incorporating uniform bounds over the index parameter as well as over
the values of the single index. Since the objective function for the local Fréchet regression
involves both the index value xJθ̄ “ t and the index parameter θ̄, conditions on the well-
separatedness, entropy, and curvature needs to be extended for all values of t and θ̄. These
assumptions are adapted from empirical process theory, guarantee the asymptotic uniform
equicontinuity of L̃b, and control the behavior of L̃b ´ M and L̂n ´ L̃b near the minimizers
m‘pt, θ̄q and m̃‘pt, θ̄q, respectively, uniformly over t and θ̄. assumption (U1) is commonly
used to establish the uniform consistency of M-estimators (Van der Vaart and Wellner, 2000)
by showing the weak convergence of the respective empirical processes. In conjunction with
the assumption that the metric space Ω is totally bounded, this implies the pointwise con-
vergence of the minimizers for any given t and θ̄; it also ensures that the asymptotic uniform
equicontinuity of L̃b and L̂n, and implies the (asymptotic) uniform equicontinuity of m̃‘

and m̂‘, whence the uniform convergence of the minimizers follows as the support of xJθ̄ is
compact for any θ̄.

Assumptions (U1)- (U3) are easily verified for specific metric space-valued objects.

Example 1 Let Ω be the set of probability distributions on a closed interval of R with finite second
moments, endowed with the Wasserstein-2 distance dW , i.e., for any two distributional
objects Y1 and Y2 with cdfs FY1 and FY2 respectively,

dW pY1, Y2q “

ż 1

0

pF´1
Y1

pzq ´ F´1
Y2

pzqq
2dz,

where F´1
Yj

pzq is the quantile function for Yj, j “ 1, 2. The Wasserstein space pΩ, dW q

satisfies assumptions (U1)- (U3) with β1 “ β2 “ 2.

Example 2 Let Ω be the space of r-dimensional correlation matrices, i.e., symmetric, positive
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semidefinite matrices in Rrˆr with diagonal elements equal to 1, endowed with the
Frobenius metric dF . Specifically for any two elements Y1, Y2 P Ω,

dF pY1, Y2q “
a

traceppY1 ´ Y2q⊺pY1 ´ Y2qq.

The space pΩ, dF q satisfies assumptions (U1)- (U3) with β1 “ β2 “ 2.

For Examples 1-2, we note that since the Wasserstein space for one-dimensional distri-
butions and the space of correlation matrices are Hadamard spaces, there exists a unique
minimizer of Mp¨, t, θ̄q for any t P T and θ̄ P Θ̄ (Sturm, 2003). Examples 1-2 follow from
similar arguments as those in the proofs of Propositions 1-2 of Petersen and Müller (2019)
by observing that the arguments hold uniformly across t and θ̄. Assumptions (R1) and (R2)
are standard distributional assumptions for local nonparametric regression and are needed to
show the convergence of the bias and stochastic parts for the local linear Fréchet estimator
uniformly over all t and θ̄. In particular, Assumption (R1) can be verified for a general class
of kernel functions given by

cκp1 ´ x2
q
κI pr´1, 1sq , κ P Z,

where cκ “
Γpk` 3

2
q

?
πΓpk`1q

is such that
ş1

´1
cκp1´x2qκdx “ 1 and the indicator function is defined as

I pAq “ 1 if X P A, and 0 otherwise. The Epanechnikov kernel Kpxq “ 3
4
p1 ´ x2qI pr´1, 1sq

belongs to this class of kernel functions for κ “ 1 with cκ “ 3{4.

S.2. Further discussion of assumption (A5)

Assumption (A5) in Section 3 of the main manuscript intuitively means that m‘ can be
locally approximated by straight lines in Euclidean space and geodesics in geodesic spaces. In
the Euclidean case, it is satisfied for twice differentiable functions m‘, a common assumption
for classical single index modeling. Beyond the Euclidean special case, assumption (A5)

Consider first the Euclidean case, where Ω is a compact subset M Ă R and denote the
link function m‘ by m. Noting that the map h : θ ÞÑ θ̄ is continuous, and m‘pzJθ̄, θ̄q :“

ϕpθ̄q “ ϕphpθqq, for some function ϕ of θ̄ P Θ̄ and for any given z P X Ă Rp, with a slight
abuse of notation, we write m‘pzJθ,θq instead of m‘pzJθ̄, θ̄q. For any given z P X Ă Rp and
θ P Θ such that θJθ ă 1, denote m

`

zJθ,θ
˘

“ mpz0,θq by mpz0q, where z0 “ zJθ P R and
for a small enough a P p0, a0q, such that z0, z0`2a P T , we have mpz0q,mpz0`aq,mpz0`2aq P

M. If mp¨q is twice continuously differentiable in any open subset containing z0 such that
the derivatives are uniformly bounded, the midpoint on the straight line (geodesic path)
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Figure B.7: The left figure shows the geodesic triangle formed by the three points u, m‘pz0q,
m‘pz0 ` 2aq, where v is the midpoint of the geodesic connecting the points m‘pz0q and
m‘pz0 ` 2aq. The red line depicts the true regression function m‘. m‘pz0 ` aq is closely
approximated by v lying on a geodesic that connects m‘pz0q with m‘pz0 ` 2aq. The right
hand side shows the reference triangle in R2 as an illustration of the CAT(0) inequality.

connecting mpz0q and mpz0 ` 2aq is given by v “ 1
2
rmpz0q ` mpz0 ` 2aqs. Using a second-

order Taylor expansion for the function m around z0, we have

∥v ´ m‘pz0 ` aq∥E

“∥1
2

rmpz0q ` mpz0 ` 2aqs ´ m‘pz0 ` aq∥E

“∥r
1

2
mpz0q `

1

2
mpz0q ` am1

pz0q `
1

2

p2aq2

2
m2

pζ1qs ´ rmpz0q ` am1
pz0q `

a2

2!
m2

pζ2qs∥E

“∥a2rm2
pζ1q ´

1

2
m2

pζ2qs∥E,

where z0 ă ζ1 ă z0 ` 2a, and z0 ă ζ2 ă z0 ` a. Assuming a uniform bound on the second
derivative of m, such that |m2pzq| ď C for some C ą 0 and for all z P T , we have that
∥v ´ m‘pz0 ` aq∥E ď 3C

2
a2. Thus, assumption (K2) holds for C˚ “ 3C{2, as long as the

bound C on the second derivative of m is sufficiently small.
Next, we consider Ω to be the space of univariate distributions, F , endowed with the

Wasserstein-2 metric dW . The quantile functions for the distributional objects m‘pz0q, m‘pz0`

aq, and m‘pz0 ` 2aq are denoted by Qpm‘pz0qqp¨q, Qpm‘pz0 `aqqp¨q, and Qpm‘pz0 ` 2aqqp¨q,

respectively. Similarly, the quantile function of the midpoint v of the geodesic path connect-
ing m‘pz0q and m‘pz0 ` 2aq is given by

Qpvqp¨q “
1

2
rQpm‘pz0qqp¨q ` Qpm‘pz0 ` 2aqqp¨qs.
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We write qpz0qp¨q “ Qpm‘pz0qqp¨q “ qpz0qp¨q, analogously for related quantities. The Wasser-
stein distance between v and m‘pz0 ` aq is then given by

d2W pv,m‘pz0 ` aqq “

ż 1

0

pQpvqptq ´ Qpm‘pz0 ` 2aqqptqq
2 dt

“

ż 1

0

ˆ

qpz0qptq ` qpz0 ` 2aqptq

2
´ qpz0 ` 2aqptq

˙2

dt

We assume that for every t P r0, 1s, qpzqptq is twice continuously differentiable as a function
of z, for any z in an open subset containing z0 such that derivatives of qpzqptq are uniformly
bounded for each t P r0, 1s. Using a second-order Taylor expansion of qp¨qptq pointwise
t P r0, 1s, and following a similar argument as in the Euclidean case, we have

d2W pv,m‘pz0 ` aqq “

ż 1

0

ˆ

a2rq2
pζ1qptq ´

1

2
q2

pζ2qptqs

˙2

dt,

Lastly, under the assumption that the |q2pzqptq| ď rptq, such that
ş1

0
r2ptq ă C, assumption

(K2) holds for C˚ “ 3{2C, as long as the bound C is sufficiently small.
We further illustrate the argument for assumption (K2) for distributional objects in

the specific context of a location-scale family of univariate distributions, F , endowed with
the Wasserstein-2 metric dW . Denoting the location and scale parameters as µp¨q and σp¨q

respectively, the quantile function corresponding to the distribution object m‘pz0q P F will
be given by

Qpm‘pz0qqp¨q “ µpz0q ` σpz0qF
´1

p¨q,

where F´1p¨q is the quantile function for the distribution object m‘pz0q. The quantile func-
tions for m‘pz0 ` aq and m‘pz0 ` 2aq can be similarly defined. Also, the quantile function
of the midpoint of the geodesic path connecting m‘pz0q and m‘pz0 ` 2aq is given by

Qpvqp¨q “
1

2
rµpz0q ` µpz0 ` 2aqs `

1

2
rσpz0q ` σpz0 ` 2aqsF´1

p¨q.
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The Wasserstein distance between v and m‘pz0 ` aq is given by

d2W pv,m‘pz0 ` aqq “

ˇ

ˇ

ˇ

ˇ

µpz0q ` µpz0 ` 2aq

2
´ µpz0 ` aq

ˇ

ˇ

ˇ

ˇ

2

`

ˇ

ˇ

ˇ

ˇ

ˇ

σpz0q ` σpz0 ` 2aq

2
` σpz0 ` aq ´ 2

ˆ

σpz0q ` σpz0 ` 2aq

2
σpz0 ` aq

˙1{2
ˇ

ˇ

ˇ

ˇ

ˇ

2

ď

ˇ

ˇ

ˇ

ˇ

µpz0q ` µpz0 ` 2aq

2
´ µpz0 ` aq

ˇ

ˇ

ˇ

ˇ

2

`

ˇ

ˇ

ˇ

ˇ

σpz0q ` σpz0 ` 2aq

2
´ σpz0 ` aq

ˇ

ˇ

ˇ

ˇ

2

,

where the last inequality holds because 1
2
σpz0q ` σpz0 ` 2aq and σpz0 ` aq are both positive.

Assuming µp¨q and σp¨q are twice continuously differentiable in any open subset containing
z0 such that their derivatives are uniformly bounded, the result follows in a similar manner
to the Euclidean case.

We next show that assumption (A5) holds under the sufficient conditions (K1), (K2),and
(K3), that is, for any u P Ω, and z0 P T , there exists some κ ą 0, such that, for any small
a ą 0,

1

a2
rd2pu,m‘pz0 ` 2aqq ´ 2d2pu,m‘pz0 ` aqq ` d2pu,m‘pz0qqs ě κ (B.10)

Observe that

1

a2
rd2pu,m‘pz0 ` 2aqq ´ 2d2pu,m‘pz0 ` aqq ` d2pu,m‘pz0qqs (B.11)

“
1

a2
rd2pu,m‘pz0 ` 2aqq ´ 2d2pu, vq ` d2pu,m‘pz0qqs

`
1

a2
r2d2pu, vq ´ 2d2pu,m‘pz0 ` aqqs.

Assumption (K3) in conjunction with assumption (A2) implies that m‘ is bi-Lipschitz with
constants 0 ď L˚ ď L. We have

2aL˚ ď dpm‘pz0 ` 2aq,m‘pz0qq ď 2La. (B.12)

Thus the first term of (B.11) becomes

1

a2
“

d2pu,m‘pz0 ` 2aqq ´ 2d2pu, vq ` d2pu,m‘pz0qq
‰

(B.13)

ě
4L2

˚

d2pm‘pz0 ` 2aq,m‘pz0qq

“

d2pu,m‘pz0 ` 2aqq ´ 2d2pu, vq ` d2pu,m‘pz0qq
‰

,

where this inequality follows from assumptions (A2), using (B.12). Assuming Ω is a geodesic
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CAT(0) space, the geodesic triangle △pu,m‘pz0q,m‘pz0 ` 2aqq, formed by the vertices u,

m‘pz0q, and m‘pz0 ` 2aq, will have a comparison triangle △pp̄, q̄, r̄q in the reference space
R2 for some points p̄, q̄, r̄ P R2. This implies

dpu,m‘pz0qq “ ||p̄ ´ q̄||E, dpu,m‘pz0 ` 2aqq “ ||p̄ ´ r̄||E, (B.14)

dpm‘pz0q, vq “ ||q̄ ´ v̄||E, dpm‘pz0 ` 2aq, vq “ ||r̄ ´ v̄||E.

By virtue of assumption (K1),

dpu, vq ď ||p̄ ´ v̄||E. (B.15)

Thus combining (B.13)– (B.15) one obtains

1

a2
“

d2pu,m‘pz0 ` 2aqq ´ 2d2pu, vq ` d2pu,m‘pz0qq
‰

(B.16)

ě2L2
˚

}p̄´r̄}2E´}p̄´v̄}2E
||r̄´v̄||E

´
}p̄´v̄}2E´}p̄´q̄}2E

||q̄´v̄||E

||r̄ ´ q̄||E
“ 2L2

˚ ą 0.

This uses the fact that r̄, v̄, q̄ are co-linear in the Euclidean space with v̄ being the midpoint
between r̄ and q̄, and hence the second order difference is just 1. Thus the first term of (B.11)
is seen to be greater than or equal to 2L2

˚.

As for the second term of (B.11), by simple algebra and the triangle inequality,
ˇ

ˇ

ˇ

ˇ

2

a2
rd2pu, vq ´ d2pu,m‘pz0 ` aqqs

ˇ

ˇ

ˇ

ˇ

(B.17)

“
2

a2
|pdpu, vq ` dpu,m‘pz0 ` aqqq| |pdpu, vq ´ dpu,m‘pz0 ` aqqq|

ď
4D

a2
dpv,m‘pz0 ` aqq ď 4DC˚.

The last inequality follows from equation (B.2) in assumption (K2). In assumption (K2),
given L and D, C˚ can be chosen sufficiently small such that 2L2

˚ ą 4DC˚. Thus, combin-
ing (B.16) and (B.17) with (B.11), the result follows for κ “ 2L2

˚ ´ 4DC˚ ą 0.

S.3. Additional data illustrations and simulations

This section provides further illustrations of data applications and simulations. Random ob-
jects considered in the additional data demonstrations discussed in this section are univariate



50 REFERENCES

probability distributions with compact support endowed with the Wasserstein-2 metric (ap-
plied to human mortality data) and compositional data that are mapped to the positive
segment of a sphere, endowed with the geodesic distance and applied to the mood composi-
tional data. Further illustrations of the proposed method include an additional plot for the
ADNI study and a simulation study with Euclidean responses.

S.3.1. Human mortality and age-at-death distributional object responses

The performance of the proposed model is demonstrated with an application to human
mortality data across countries. We view the age-at-death distributions as random object
responses of interest and aim to find their association with Euclidean predictors such as
economic, social, and healthcare indices among other relevant factors, aiming at a compre-
hensive understanding of human longevity and health conditions.

For this analysis, we used the lifetables for males aggregated yearly in age groups varying
from age 0 to 110 for 40 countries in the calendar year 2010. The data consist of period lifeta-
bles for each country and each calendar year and were obtained from the Human Mortality
Database (https://www.mortality.org/). We computed histograms of age-at-death from
the lifetables for each country and calendar year, which were then smoothed with local least
squares to obtain smooth estimated probability density functions for age-at-death using the
R package frechet (Chen et al., 2020). After this preprocessing step, the data are a sample of
univariate probability distributions for n “ 40 countries was obtained, shown in the left panel
of Figure B.8. We equipped the sample of age-at-death distributions with the Wasserstein-2
metric pΩ, dW q and selected the following six socio-economic predictors measured at the cal-
endar year 2010: X1 “ Population density (people per sq. km of land area), X2 “ Fertility
rate, total (births per woman), X3 “ GDP per capita, at Purchasing Power Parity (PPP),
X4 “ Access to electricity (% of the population), X5 “ Current health expenditure (% of
GDP), and X6 “ Unemployment, total (% of the total labor force) (national estimate). The
data were obtained from the World Bank Database at https://data.worldbank.org.

We first standardized all predictors separately, then applied the proposed Index Fréchet
Regression (IFR) method to obtain the estimated unit direction parameter (rounded to 4
decimal places)

p

sθ “ p0.0173, 0.7875, 0.5879, 0.0167, 0.1646,´0.0807q
⊺.

The estimated coefficient for the predictor Fertility Rate (X2) has the highest absolute value,
indicating its heavy influence relative to the other five predictors on the index XJp

sθ, and hence

https://www.mortality.org/
https://data.worldbank.org
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on the fitted value for the IFR model. The estimated index XJp

sθ can be also perceived as the
first sufficient predictor, which reduces the dimension of the predictor space without losing
the information about the response. This aligns with the sufficient dimension reduction
methods for Fréchet regression (Zhang et al., 2021) and provides an insight into the overall
dependence of the predictors on the object response.

In the right panel of Figure B.8, the age-at-death densities are plotted against the esti-
mated index values, aka the first sufficient predictors, XJp

sθ. It is evident that countries with
low index values have modes of the distribution at lower ages, while for countries with high
values of the index, the modes of mortality distributions are significantly higher. Further,
the countries with higher index values indicate very low infant mortality rates.
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Figure B.8: Data visualization for age-at-death densities for 40 countries at the calendar year
2010. The left panel shows the observed densities at random order while the right panel plots
the observed densities against the estimated index values from the proposed Index Fréchet
Regression (IFR) model.

The plots of the observed and estimated age-at-death densities over the support of age
r0, 110s and against the estimated index values, aka the first estimated sufficient predic-
tor, are shown in Figure B.9. It is interesting to observe that the estimated index values
are associated with the location and variation features of the age-at-death distributions.
Specifically, with the increase in the values of the index, the mean of the mortality distribu-
tion increases non-linearly while the standard deviation diminishes, indicating the death age
more concentrates between 70 and 80. This finding is in line with the observations of Zhang
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et al. (2021), who employed several sufficient dimension reduction (SDR) techniques to the
mortality distributions.
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Figure B.9: The observed and estimated age-at-death distributions for 40 countries at the
calendar year 2010 are displayed in the left and right panel of figure, respectively. The
distributions are plotted over the support of the age interval r0, 110s against the index values
estimated by the IFR model.

Further, the importance of various predictors can be inferred from the estimated coef-
ficients p

sθ. As before we keep the first predictor (X1 “ Population density) with the cor-
responding coefficient θ̂1 “ 0.0173 ą 0 in the model and test for the following hypothesis:
H0 : θ02 “ ¨ ¨ ¨ “ θ0p “ 0 vs. H1, the complement of H0, which is the test for overall regres-
sion effect for object responses. Writing θ̂ “ pθ̂2, . . . , θ̂6q, the test statistic is constructed as
T̃n “ θ̂JppΛ˚

Bq´1θ̂
approx.

„ χ2
5 under H0 (see Section 5.1), where pΛ˚

B is the bootstrap estimator
for asymptotic covariance matrix as described in Proposition 5. The null hypothesis is re-
jected at level α if T̃n ą χ2

5p1 ´ αq. From our analysis, T̃n “ 18.883 ą 11.0705 “ χ2
5p1 ´ αq

for the level α “ 0.05. The p-value is actually 0.002 and the null hypothesis is thus clearly
rejected, demonstrating there is a regression effect. Upon further analysis it is found that the
most significant predictors, in order, are X2 “ Fertility rate, total (births per woman), X3 “

GDP per capita, at Purchasing Power Parity (PPP), and X5 “ Current health expenditure
(% of GDP).

We proceed to compare fits for the year 2010 from the IFR model with the Global Fréchet
Regression (GFR) model with the 6´dimensional predictors, as well as with three separate
Local Fréchet Regression (LFR) models, where the three important predictors Fertility Rate,
GDP per capita and Health Expenditure are considered in each LFR model separably as
univariate predictors. The global Fréchet model suffers from model-induced bias, while the
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Figure B.10: Figure displaying the observed and predicted smooth densities. Clockwise,
from top-left the observed densities (OBS), the fitted densities using Index Frechet Regres-
sion (IFR), Global Fréchet Regression (GFR), and Local Fréchet Regression (LFR). The
predictors used for the LFR fits are Fertility Rate (LFR1), GDP per capita (LFR2) and
Health Expenditures (LFR3), respectively. Densities are color-coded (blue to red indicating
low to high) by the mode of the age-at-death distribution.

local linear Fréchet Regression models with individual univariate predictors lack relevant
information from other variables. The IFR model is a semiparametric approach that com-
bines the strengths of both of these models. Figure B.10 displays the observed as well as the
fitted distributions (as densities) for these five models. The superiority of the IFR model
compared to the local linear Fréchet fits, using only the relatively important predictor vari-
ables individually indicates that all predictors simultaneously play an important role in the
overall prediction through the estimated index xJp

sθ. To study the effect of the most impor-
tant predictors, GDP per capita, fertility rate, and Health expenditure percentage on the
age-of-death densities, we fitted the IFR model when varying the value of one predictor,
while keeping the other two fixed at their mean levels. For example, the left-most panel of
Figure B.11 illustrates how the age-at-death density changes with increasing levels of GDP
per capita, while the other two predictors are kept fixed. The fitted densities are color coded
such that blue to red indicates a smaller to a larger value of GDP. We find that smaller
values of GDP are associated with left-shifted age-at-death distributions for the population.
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Figure B.11: Figure showing the effects of the significant predictors X3 “ GDP per capita, X2 “

Fertility rate, and X5 “ Current health expenditure. The left panel shows the change in density
with changing value of X3 from low (blue) to high (red), when X2 and X5 are fixed at their mean
level, and analogously for middle and right panels.

For increasing levels of health expenditure per capita and fertility rates, the age-at-death
densities also shift rightwards, but to a lesser extent.

Finally, to illustrate the out-of-sample prediction performance of the proposed IFR model,
we randomly split the dataset into a training set with sample size ntrain “ 20 and a test set
with the remaining ntest “ 20 subjects. The IFR method was implemented as follows: For
any given unit direction θ̄ P Θ̄, we partition the domain of the projections into M equal-
width non-overlapping bins and consider the representative observations X̃l and Ỹl for the
data points belonging to the l´th bin. The “true” index parameter is estimated as p

sθ as per
equation (2.11). We then take the fitted objects obtained from the training set and predict
the responses in the test set using the covariates present in the test set. As a measure of the
efficacy of the fitted model, we compute the root mean squared prediction error (RMPE) as

RMPE “

«

1

Mntest

Mntest
ÿ

i“1

d2W

´

Ỹ test
l , m̂‘pX̃test⊺

l
p

sθ, p

sθq

¯

ff1{2

, (B.18)

where Ỹ test
l and m̂‘pX̃test⊺

l
p

sθ, p

sθq denote, respectively, the lth observed and predicted responses
in the test set, evaluated at the binned observation X̃test

l . For any two distribution objects
F,G P pΩ, dW q, the Wasserstein-2 distance is given by

dW pF,Gq “

ż 1

0

pF´1
psq ´ G´1

psqq
2ds,

where F´1 and G´1 are the quantile functions corresponding to F and G respectively. We
repeat this process 500 times, and compute RMPE for each split for the subjects separately.
The mean and sd of the RMPE over the repetitions are shown in Table 7 for the IFR method,
as well as for the GFR and individual LFR fits.
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Table 7: Mean and sd (in parenthesis) of the RMPE as given in (B.18) comparing the
performance of various Fréchet regression models: Index Frćhet Regression (IFR), Global
Fréchet Regression (GFR), Local Fréchet Regression (LFR). The predictors used for the three
individual LFR fits are Fertility Rate, GDP per capita at PPP, and Health Expenditure,
respectively, as indicated in parentheses.

IFR GFR LFR1
(on Fertility Rate)

LFR2
(on GDP

per Capita-PPP)

LFR3
(on Health

Expenditure)
0.178 (0.0552) 0.287 (0.0671) 0.491 (0.0605) 0.603 (0.0654) 0.339 (0.0565)

Using out-of-sample performance, the IFR model emerges as the best model, as the
average RMPE of 0.178 is much lower than that of any of the other models.

S.3.2. Emotional well-being for unemployed workers: Compositional data as
random object responses

We demonstrate the proposed IFR method for the analysis of mood compositional data.
Compositional data are random vectors with non-negative components, where the compo-
nents of these vectors sum to 1. With a square-root transformation of the components,
compositional vectors can be transformed to unit vectors that lie on the positive segment
of a sphere Sp´1 if the compositional vectors are p´dimensional (Scealy and Welsh, 2011,
2014). Thus one can represent compositional data as manifold-valued objects that lie on
the surface of a sphere. The data used for this application were collected in the Survey
of Unemployed Workers in New Jersey (Krueger et al., 2011) conducted in the fall of 2009
and the beginning of 2010, during which the unemployment rate in the US peaked at 10%
after the financial crisis of 2007 – 2008; similar data were used to illustrate longitudinal
compositional methods in Dai et al. (2021). We note that here the object-valued responses
lie on a manifold (sphere) with positive curvature. Thus the sufficient (but not necessary)
condition for assumption (A5) that the underlying metric space behaves like a CAT(0) space
is not satisfied. This example thus provides a check on the behavior of IFR when the random
objects are situated in a positively curved space.

Unemployed workers belonging to a stratified random sample were surveyed at entry into
the study, where we analyzed the data for n “ 3301 workers with complete measurements.
A key variable in the survey was the proportion of time the workers spent in each of the
four moods: bad, low/irritable, mildly pleasant, and very good while at home; we use this
4-dimensional compositional vector as the response. Formally, the composition measurement
of interest is Z “ pZ1, Z2, Z3, Z4q

⊺, where Zj is the proportion of time a worker spent in the
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j-th mood when at home, j “ 1, . . . , 4. The square-root transformed compositional data

Y “ pY1, Y2, Y3, Y4q
⊺

“ p
?
Z1,

?
Z2,

?
Z3,

?
Z4q

J,

lie on the sphere S3. We adopt the geodesic metric on this sphere dgpy, y˚q “ arccospyJy˚q.

These square root transformed compositional data are treated as the object responses in
a regression model with the following 10 baseline predictors obtained from the questionnaire,
reflecting various socio-economic and demographic information: (1) life satisfaction (discrete
with levels 0-3, 3 meaning most satisfied) (2) highest education level (discrete with levels 0-5,
indicating high school or less, high school diploma or equivalent, college education, college
diploma, graduate school, and graduate degree, respectively), (3) marital status (discrete
with levels 0-5, indicating single (never married), married, separated, divorced, widowed,
and domestic partnership (living together but not married), respectively), (4) number of
children (discrete), (5) the number of people in the household (discrete), (6) total annual
household income (continuous), (7) hours per week working at the last job (continuous), (8)
how the last job ended (discrete with levels 0-2 lost job, quit job, and temporary job ended,
respectively), (9) weeks spent looking for work (continuous), and (10) credit card balance
(continuous).

For these data, the IFR model produces the coefficient estimates

p

sθ “ p0.483, 0.134,´0.166,´0.190, 0.042, 0.303, 0.075, 0.230, 0.662,´0.307q
⊺.

The estimated coefficients can be used to obtain interpretable visualizations of the effect of
the individual predictors on the compositional response through the (estimated) single index
link function, which can further lead to effective inference for the proposed IFR model.
For example, we illustrate below (Figure B.12) the effect of the predictor “life satisfaction”
on the mood compositional data. To this end, the IFR model is fitted over varying levels
of life satisfaction, from low (0) to high (3), while the other predictors are fixed at their
median levels. We observe an association between a lower life satisfaction level with a higher
proportion of bad mood, while a higher value of life satisfaction is associated with a better
mood when all of the other predictors are fixed.

The predictive performance of the model is computed based on the root mean prediction
error (RMPE) as

RMPE “

«

1

Mntest

Mntest
ÿ

i“1

d2g

´

Ỹ test
l , m̂‘pX̃

J

l
p

sθ, p

sθq

¯

ff1{2

,
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Figure B.12: A stacked barplot showing the effect of life satisfaction, from Level 1 (0) to
Level 4 (3), on the mood composition, when all the other predictor levels are kept fixed. A
higher life satisfaction level is associated with a larger proportion of good mood.

where Ỹ test
l and m̂‘pX̃

J

l
p

sθq denote, respectively, the lth observed and predicted responses in
the test set, evaluated at the binned average X̃l. We repeat this process 200 times, and
compute RMPE for each split for the subjects separately. For comparison purposes, we fit
the data with the other applicable object regression methods, namely, the global Fréchet
regression (GFR) method with the four-dimensional mood-compositional data as the re-
sponse residing on the surface of the sphere S3 Ă R4, coupled with the 10-dimensional
predictors; and individual local linear Fréchet regression (LFR) methods accommodating
the afore-mentioned object response, while incorporating the continuous predictors total an-
nual household income, hours per week working at the last job, weeks spent looking for
work and credit card balance as univariate predictors. Like nonparametric regression, the
LFR method does not work for discrete/ categorical predictors. We denote the results from
the four individual univariate local regression by LFRj, j “ 1, 2, 3, 4, respectively. Table 8
summarizes the results.

We observe that the out-of-sample prediction error is quite low. In fact, it is very close
to the average fitting error p0.351q, calculated as the average distance between the observed
training sample and the predicted objects based on the covariates in the training sets, which
supports the validity of the proposed IFR models.

Since in this example the object-valued responses lie on a manifold (sphere) with pos-
itive curvature, the sufficient (but not necessary) condition for assumption (A5) that the
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Table 8: Mean and sd (in parenthesis) of root mean prediction error (RMPE) over 200
repetitions, as obtained from the local fits of the index Fréchet regression (IFR) model, the
global Fréchet regression (GFR) model, and four individual local linear Fréchet regression
(LFR) models incorporating univariate continuous predictors. Here, ntrain and ntest denote
the sample sizes for the split training and testing datasets respectively.

ntrain ntest IFR GFR LFR1 LFR2 LFR3 LFR4

2201 1100
0.4779

p0.0720q

0.7661
p0.0418q

0.6771
p0.0021q

0.7220
p0.0450q

1.1127
p0.0910q

1.0122
p0.0810q

underlying metric space behaves like a CAT(0) space is not satisfied. However, the numer-
ical performance of the IFR method is quite good, suggesting a certain degree of model
robustness of the IFR method.

S.3.3. Additional results for the analysis of ADNI neuroimaging data

The individual effect of the significant predictors- stages of the disease, age, and total score,
is illustrated. To this end, the IFR model is fitted over varying values of one predictor, while
keeping the other two fixed at their mean levels.

For any r ˆ r correlation matrix Y , the Fiedler value is the second smallest eigenvalue of
the corresponding graph Laplacian matrix

LpY q “ DpY q ´ ApY q.

Here ApY q “ pY ´ Irq` is the adjacency matrix obtained by applying a threshold and
setting the diagonal elements to zero, and DpY q “ diagApY q1r is the degree matrix, where
Ir “ diag1r, 1r “ p1, . . . , 1q⊺ P Rr, and H` “ pmaxtHkl, 0uqk,l“1...,r for any matrix H P Rrˆr.

The Fiedler value corresponding to Y is then given by the map λr´1pLpY qq, which produces
the pr ´ 1qth largest, i.e., second smallest eigen value of LpY q. After fitting the proposed
IFR model, the Fiedler values are calculated over varying values of age and total score. The
left panel of Figure B.13 shows how the Fiedler value changes with increasing age, while the
total score is kept fixed at its mean level, while the right panel shows the Fiedler values over
the varying total scores for the fixed mean level of age. In the age-varying Fielder value
figure, a convex pattern can be seen around the minimum, which is attained at 78 years of
age. This agrees with most studies that have found that functional connectivity decreases
during normal aging processes before 80 years of age. Further, we observe that the decrease
is reversed for older ages above 80. On the other hand, for a higher value of the total score,
the Fielder values show a steep decreasing pattern.
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Figure B.13: Fiedler values as a function of age and total score, corresponding to the index
FrÃ©chet regression (IFR) fits for the correlation matrix-valued object responses. The left
panel shows the change in the estimated Fiedler value for varying values of age (X2) from
low to high when X4 (total score) is fixed at its mean level, with the minimum attained at
78 years of age marked by a red dashed line. The right panel shows the change in the total
score for a fixed mean level of age.

Further, continuing from Section 5.1 in the main manuscript, we illustrate the 95% con-
fidence region for the coefficients pθ1, θ2, θ4q of the predictors: stages of the disease, age, and
total score in a 3-dimensional plot in Figure B.14.

Figure B.14: The figure shows the 3-dimensional plot for the 95% confidence region of
pθ1, θ2, θ4q: the coefficients of the effects of the predictors- age, total score, and stage of the
disease, respectively.



60 REFERENCES

S.3.4. Additional simulations for Euclidean responses

Here the object response of interest is assumed to lie in the Euclidean space. For generating
the predictor vectors we consider a 5´dimensional vector distributed as truncated multivari-
ate normal distributions, where each of the components is truncated to lie between r´10, 10s.

The components are assumed to be correlated such that X1 correlates with X2 and X3 with
r “ 0.5, and X2 and X3 correlate with r “ 0.25. The variances for each of the five compo-
nents are 0.1. The empirical power against the sequence of alternatives in equation (3.10)
increases steeply (see Figure B.15) as we deviate from the null hypothesis in equation (3.9) in
Section 3 of the main manuscript, especially corresponding to higher sample size and under
identity link.

The empirical power function, as we deviate from the null hypothesis in equation (3.9) is
computed and illustrated in the left panel in Figure B.15. Empirical evidence suggests that
the proposed test is consistent for a higher sample size of n “ 1000, and leads to the correct
nominal level of the test.
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Figure B.15: Simulation for Euclidean response using different link functions showing the
empirical power function for Euclidean responses. The black, red, and blue curves correspond
to the identity, square, and exponential link functions used in the data-generating mechanism,
respectively, while the dashed and solid patterns correspond to the varying sample sizes
n “ 100 and n “ 1000, respectively. The level of the tests is α “ 0.05 and is indicated by
the dashed line parallel to the x-axis.

The consistency of the estimates is illustrated in Table 9 based on 500 replications of the
simulation scenario. Further, the performance of the proposed method is compared to the
classical Euclidean single index model fits. To this end, the R package np was called from
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Table 9: Table showing bias and variance of p

sθ (measured in radians) based on 500 replications
for a Euclidean vector response. The predictors X1, . . . , X5 are generated from a truncated
multivariate normal distribution.

link1 (x ÞÑ x) link2 (x ÞÑ x2) link3 (x ÞÑ ex)
bias dev bias dev bias dev

n “ 100 0.013 0.061 0.025 0.048 0.037 0.029
n “ 1000 0.006 0.021 0.014 0.019 0.013 0.009

Julia, for fitting the classical single index regression to the simulated Euclidean responses.
The prediction performance of the classical single index fits, denoted by NP, is compared
with that of the IFR method, as well as with a Global Fréchet Regression (GFR) method
and four separate Local Frécet Regression (LFR) fits. The GFR method utilizes the multi-
variate predictors while the four LFR methods treat each of the four-dimensional predictor
components as a univariate predictor individually. Note that in all of the methods- NP, GFR,
LFR - binning is not required. The mean and sd of the root mean prediction error (RMPE)
over 200 Monte Carlo simulation runs are reported in Table 10. The data is simulated

Table 10: Table showing the mean (sd in parenthesis) RMPE for various regression meth-
ods for simulated Euclidean responses. The methods compared are index Fréchet regression
(IFR), classical Euclidean single index regression using the R package “np” (NP), global
Fréchet Regression (GFR) with the 4-dimensional predictor, and four individual local linear
Fréchet regression (LFR) models that treat each predictor components as a univariate pre-
dictor. The sample size is fixed at n “ 1000 and the RMPE are computed over 200 Monte
Carlo simulation runs.

Identity link Square link Exponential link
IFR 0.0255 (0.0110) 0.1383 (0.1031) 0.1972 (0.1205)
NP 0.0187 (0.0201) 0.1117 (0.1077) 0.1578 (0.0442)

GFR 0.0003 (0.0018) 0.1465 (0.0299) 0.2181 (0.0748)
LFR1 0.0788 (0.0208) 0.2686 (0.0558) 0.3342 (0.1882)
LFR2 0.0784 (0.0204) 0.2627 (0.0540) 0.3237 (0.1912)
LFR3 0.0617 (0.0209) 0.2774 (0.0555) 0.3162 (0.1892)
LFR4 0.0730 (0.0197) 0.2694 (0.0561) 0.3664 (0.1888)

using three different generating mechanisms - the identity, squared, and exponential link
functions, and the sample size n “ 1000 is considered. For the identity link function, i.e.,
when the simulated data is generated according to a linear model, the GFR method gives
the lowest prediction error. This is indeed expected since the GFR boils down to a linear
regression model when the object data are Euclidean. For other situations the NP method
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for the classical single index model outperforms the other methods, however, the proposed
IFR method proves competitive with a comparable magnitude of the prediction error. The
boxplot of the RMPEs for the above situations is shown in Figure B.16.
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Figure B.16: Figure showing boxplot of RMPEs for various regression methods for simulated
Euclidean responses. The methods compared are index Fréchet regression (IFR), classical
Euclidean single index regression using the R package “np” (NP), global Fréchet Regression
(GFR) with the 4-dimensional predictor, and four individual local linear Fréchet regression
(LFR) models that treat each predictor components as a univariate predictor. The sample
size is fixed at n “ 1000 and the RMPE are computed over 200 Monte Carlo simulation
runs.

S.3.5. Simulation results for adjacency matrix as random object responses

Here we consider responses that are adjacency matrices obtained for weighted networks
and equipped with the Frobenius norm. We generated samples of networks with m “

10 nodes, as one might encounter in brain networks, represented as weighted adjacency
matrices. The predictors were sampled from a 4´dimensional zero mean multivariate normal
distribution with covariance matrix defined by corpX1, X2q “ corpX1, X3q “ corpX2, X3q “

0.3, and corpX1, X4q “ corpX2, X4q “ ´0.4. and variances of all components equal to 0.25.

Subsequently each of the components was truncated to lie between r´5, 5s. The elements of
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the weighted adjacency matrices Y “ pYqrq were then obtained as

Yqr “ ζpxJθ̄0q ` ϵqr, q, r “ 1, . . . ,m,

where ϵqr are independently sampled errors and the link function ζp¨q was taken as the expit
function, i.e., ζpxJθ̄0q “ 1{p1` expp´xJθ̄0qq. For a given index xJθ̄0, ϵqr was sampled from
a uniform distribution on rmaxt0,´ζpxJθ̄0qu,mint1, 1´ζpxJθ̄0qus. The matrix responses of
interest were thus generated as Y “ ζpxJθ̄0qIm ` ε, where ε “ ppϵqrqqq,r“1,...,m as generated
above and Im is the m ˆ m identity matrix.

Table 11: Table showing bias and deviance of θ̂ (measured in radians, as per eqref-
simul:bias:var) based on 500 replications for weighted adjacency matrix responses.

link px ÞÑ 1{p1 ` expp´xqq

bias dev avg. MSD
n “ 100 0.044 0.052 0.672
n “ 1000 0.021 0.019 0.041

Table 11 presents the bias and variance of the estimator computed based on 500 repli-
cation of the data generating process. The mean squared deviation (MSD) was computed
as the average distance between the true and estimated adjacency matrices, similar to (27).
The average mean squared deviation (MSD) over 500 simulation runs is quite low. With a
higher sample size, the estimates seem to perform better consistently. We also note here that
the non-zero correlation among the components of the predictor vector does not influence
the performance of the nonparametric regression fit negatively.

Figure B.17 shows the empirical power function as we deviate from the null hypothesis
in (22) for two different sample sizes. Empirical evidence suggests that the proposed test is
consistent for a higher sample size of n “ 1000, and leads to the correct empirical level of
the test.
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Figure B.17: Simulation for adjacency matrix response for different sample sizes. The figure
displays the empirical power as function of δ for weighted adjacency matrix responses based
on sample sizes n “ 100 and n “ 1000, in dashed and solid lines, respectively. The magenta
color corresponds to the expit link function used to generate the data, while the dashed and
solid pattern correspond to the varying sample sizes n “ 100 and n “ 1000, respectively.
The level of the tests is α “ 0.05 and is indicated by the dashed line parallel to the x-axis.
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